Quantum tomography of a third-order exceptional point in a dissipative trapped ion
- URL: http://arxiv.org/abs/2412.05870v1
- Date: Sun, 08 Dec 2024 09:33:54 GMT
- Title: Quantum tomography of a third-order exceptional point in a dissipative trapped ion
- Authors: Y. -Y. Chen, K. Li, L. Zhang, Y. -K. Wu, J. -Y. Ma, H. -X. Yang, C. Zhang, B. -X. Qi, Z. -C. Zhou, P. -Y. Hou, Y. Xu, L. -M. Duan,
- Abstract summary: We experimentally observe the parity-time symmetry-breaking-induced third-order exceptional point through non-Hermitian absorption spectroscopy.
We identify an intrinsic third order Liouvillian exceptional point associated with a parity-time symmetry breaking via quench dynamics.
Our experiments can be extended to observe other non-Hermitian phenomena involving more than two levels and potentially find applications in quantum information technology.
- Score: 0.21249883420319443
- License:
- Abstract: The requirement for Hermiticity in quantum mechanics ensures the reality of energies, while the parity-time symmetry offers an alternative route to achieve this goal. Interestingly, in a three-level system, the parity-time symmetry-breaking can lead to a third-order exceptional point with distinctive topological properties and enhanced sensitivity. To experimentally implement this in open quantum systems, it is essential to introduce two well-controlled loss channels. However, the requirement for these two loss channels presents a challenge in experimental implementation due to the lack of methods to realize the dynamics governed by an effective non-Hermitian Hamiltonian. Here we address the challenge by employing two approaches to eliminate the effects of quantum jump terms so that the dynamics is governed by an effective non-Hermitian Hamiltonian in a dissipative trapped ion with two loss channels. Based on this, we experimentally observe the parity-time symmetry-breaking-induced third-order exceptional point through non-Hermitian absorption spectroscopy. In particular, we perform quantum state tomography to directly demonstrate the coalescence of three eigenstates into a single eigenstate at the exceptional point. Finally, we identify an intrinsic third order Liouvillian exceptional point associated with a parity-time symmetry breaking via quench dynamics. Our experiments can be extended to observe other non-Hermitian phenomena involving more than two levels and potentially find applications in quantum information technology.
Related papers
- Experimental observation of parity-symmetry-protected phenomena in the quantum Rabi model with a trapped ion [13.368172641201571]
We experimentally simulate a highly controllable extended quantum Rabi model tuning into the ultra-strong or deep coupling regime.
We find sensitive responses for the two-level system entropy and phonon Wigner function in the deep coupling regime.
This work offers the prospect of exploring symmetry-controlled quantum phenomena and their applications in high-precision quantum technologies.
arXiv Detail & Related papers (2025-01-10T12:23:43Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Enhancing quantum exchanges between two oscillators [0.0]
We show that two quantum oscillators can exchange quantum states efficiently through a three-level system.
High transition probabilities are obtained using Hamiltonian engineering and quantum control techniques.
arXiv Detail & Related papers (2022-07-22T15:53:49Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - High-order exceptional point in a nanofiber cavity quantum
electrodynamics system [3.2937042191139296]
We present an all-fiber emitter-cavity quantum electrodynamics (QED) system which consists of two two-level emitters and a nanofiber cavity.
Our scheme makes it possible to observe the higher-order exceptional points based on the coupling between the emitters and the nanofiber cavity.
arXiv Detail & Related papers (2022-01-11T04:00:15Z) - Quantum simulation of parity-time symmetry breaking with a
superconducting quantum processor [0.0]
We simulate the evolution under such Hamiltonians in the quantum regime on a superconducting quantum processor.
In a two-qubit setting, we show that the entanglement can be modified by local operations.
arXiv Detail & Related papers (2021-11-23T17:43:44Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.