論文の概要: BAMBA: A Bimodal Adversarial Multi-Round Black-Box Jailbreak Attacker for LVLMs
- arxiv url: http://arxiv.org/abs/2412.05892v1
- Date: Sun, 08 Dec 2024 11:14:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:12.486887
- Title: BAMBA: A Bimodal Adversarial Multi-Round Black-Box Jailbreak Attacker for LVLMs
- Title(参考訳): BAMBA:LVLM用バイモーダル・アディショナル・マルチラウンドブラックボックス・ジェイルブレイク・アタック
- Authors: Ruoxi Cheng, Yizhong Ding, Shuirong Cao, Shaowei Yuan, Zhiqiang Wang, Xiaojun Jia,
- Abstract要約: 現在の作業には、単一ラウンド攻撃の制限、二重モードのシナジーの不足、ブラックボックスモデルへのトランスファー可能性の低下、迅速なエンジニアリングへの依存の4つの問題がある。
本稿では,LVLM用マルチラウンドブラックボックスジェイルブレイク攻撃器であるBAMBAを提案する。
- 参考スコア(独自算出の注目度): 7.184971861040213
- License:
- Abstract: LVLMs are widely used but vulnerable to illegal or unethical responses under jailbreak attacks. To ensure their responsible deployment in real-world applications, it is essential to understand their vulnerabilities. There are four main issues in current work: single-round attack limitation, insufficient dual-modal synergy, poor transferability to black-box models, and reliance on prompt engineering. To address these limitations, we propose BAMBA, a bimodal adversarial multi-round black-box jailbreak attacker for LVLMs. We first use an image optimizer to learn malicious features from a harmful corpus, then deepen these features through a bimodal optimizer through text-image interaction, generating adversarial text and image for jailbreak. Experiments on various LVLMs and datasets demonstrate that BAMBA outperforms other baselines.
- Abstract(参考訳): LVLMは広く使われているが、ジェイルブレイク攻撃による違法または非倫理的な反応に対して脆弱である。
現実世界のアプリケーションに責任あるデプロイを確実にするためには、その脆弱性を理解することが不可欠である。
現在の作業には、単一ラウンド攻撃の制限、二重モードのシナジーの不足、ブラックボックスモデルへのトランスファー可能性の低下、迅速なエンジニアリングへの依存の4つの問題がある。
これらの制約に対処するため,LVLMのマルチラウンド・ブラックボックス・ジェイルブレイク・アタッカーであるBAMBAを提案する。
まず、有害なコーパスから悪意のある特徴を学習するために画像オプティマイザを使用し、それからテキストと画像のインタラクションを通じてバイモーダルオプティマイザを通じてこれらの機能を深め、ジェイルブレイクのための敵対的なテキストとイメージを生成する。
様々なLVLMとデータセットの実験は、BAMBAが他のベースラインより優れていることを示した。
関連論文リスト
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs [11.924542310342282]
我々は、LLM(Large Language Models)アライメントを調べるための新しいブラックボックスジェイルブレイクフレームワークであるJailPOを紹介する。
スケーラビリティと普遍性のために、JailPOは攻撃モデルを慎重に訓練し、隠蔽されたジェイルブレイクプロンプトを自動的に生成する。
また、優先最適化に基づく攻撃手法を導入し、ジェイルブレイクの有効性を高める。
論文 参考訳(メタデータ) (2024-12-20T07:29:10Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs [34.221522224051846]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃を適応的に行うための適応的位置補充型ジェイルブレイク攻撃手法を提案する。
提案手法は,提案モデルの命令追従能力を利用して,まず安全なコンテンツを出力し,次にその物語シフト能力を利用して有害なコンテンツを生成する。
本手法は,従来の手法と比較して,広く認識されているセキュアモデル(Llama2)において,攻撃成功率を47%向上させることができる。
論文 参考訳(メタデータ) (2024-09-11T00:00:58Z) - Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer [33.67942887761857]
最適化可能な接尾辞を用いた新規かつ効率的なブラックボックスジェイルブレイク法であるELIPSEを提案する。
我々は,Jailbreakの目標を自然言語命令に変換するタスクプロンプトを用いて,悪意のあるクエリに対する逆接接尾辞を生成する。
ECLIPSE は3つのオープンソース LLM と GPT-3.5-Turbo に対して平均攻撃成功率 0.92 を達成し、GCG を2.4倍に上回っている。
論文 参考訳(メタデータ) (2024-08-21T03:35:24Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
我々は、WildTeamingを紹介した。これは自動LLM安全リチームフレームワークで、Wild-Chatbotインタラクションをマイニングし、新しいジェイルブレイク戦術の5.7Kのユニークなクラスタを発見する。
WildTeamingは、未確認のフロンティアLSMの脆弱性を明らかにし、最大4.6倍の多様性と敵の攻撃に成功した。
論文 参考訳(メタデータ) (2024-06-26T17:31:22Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
本稿では,ObscurePrompt for jailbreaking LLMを紹介し,OOD(Out-of-Distribution)データにおける脆弱なアライメントに着想を得た。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
本稿では,テキストと視覚のプロンプトを協調的に最適化することにより,ジェイルブレイクを実行するバイモーダル・アドバイサル・プロンプト・アタック(BAP)を提案する。
特に,大規模言語モデルを用いてジェイルブレイクの失敗を分析し,テキストのプロンプトを洗練させるために連鎖推論を採用する。
論文 参考訳(メタデータ) (2024-06-06T13:00:42Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。