論文の概要: PBI-Attack: Prior-Guided Bimodal Interactive Black-Box Jailbreak Attack for Toxicity Maximization
- arxiv url: http://arxiv.org/abs/2412.05892v3
- Date: Mon, 03 Feb 2025 11:44:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 15:57:53.383826
- Title: PBI-Attack: Prior-Guided Bimodal Interactive Black-Box Jailbreak Attack for Toxicity Maximization
- Title(参考訳): PBI-Attack: 毒性最大化のためのプリガイドバイモーダル対話型ブラックボックスジェイルブレイク攻撃
- Authors: Ruoxi Cheng, Yizhong Ding, Shuirong Cao, Ranjie Duan, Xiaoshuang Jia, Shaowei Yuan, Zhiqiang Wang, Xiaojun Jia,
- Abstract要約: そこで本研究では,前誘導バイモーダル対話型ブラックボックスジェイルブレイク攻撃による毒性評価を提案する。
本手法は,LVLMを用いて有害なコーパスから有害な特徴を抽出することから始める。
双方向の相互モーダル相互作用最適化により,これらの特徴を向上する。
実験によると、PBI-Attackは従来の最先端のジェイルブレイク手法よりも優れている。
- 参考スコア(独自算出の注目度): 8.819101213981053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the vulnerabilities of Large Vision Language Models (LVLMs) to jailbreak attacks is essential for their responsible real-world deployment. Most previous work requires access to model gradients, or is based on human knowledge (prompt engineering) to complete jailbreak, and they hardly consider the interaction of images and text, resulting in inability to jailbreak in black box scenarios or poor performance. To overcome these limitations, we propose a Prior-Guided Bimodal Interactive Black-Box Jailbreak Attack for toxicity maximization, referred to as PBI-Attack. Our method begins by extracting malicious features from a harmful corpus using an alternative LVLM and embedding these features into a benign image as prior information. Subsequently, we enhance these features through bidirectional cross-modal interaction optimization, which iteratively optimizes the bimodal perturbations in an alternating manner through greedy search, aiming to maximize the toxicity of the generated response. The toxicity level is quantified using a well-trained evaluation model. Experiments demonstrate that PBI-Attack outperforms previous state-of-the-art jailbreak methods, achieving an average attack success rate of 92.5% across three open-source LVLMs and around 67.3% on three closed-source LVLMs. Disclaimer: This paper contains potentially disturbing and offensive content.
- Abstract(参考訳): 大規模ビジョン言語モデル(LVLM)のジェイルブレイク攻撃に対する脆弱性を理解することは、彼らの責任を負う現実世界の展開に不可欠である。
これまでの作業のほとんどは、モデル勾配へのアクセスを必要とするか、あるいは、ジェイルブレイクを完了させるために人間の知識(プロンプトエンジニアリング)に基づいており、画像とテキストの相互作用をほとんど考慮していないため、ブラックボックスのシナリオでジェイルブレイクができないか、パフォーマンスが低くなる。
これらの制限を克服するため、PBI-Attackと呼ばれる毒性最大化のための事前誘導型双方向ブラックボックスジェイルブレイク攻撃を提案する。
提案手法は,LVLMを用いて有害なコーパスから有害な特徴を抽出し,それらの特徴を先行情報として良質な画像に埋め込むことから始める。
その後,両方向の相互モーダル相互作用の最適化によりこれらの特徴を増強し,両モードの摂動をグレディサーチにより反復的に最適化し,生成した応答の毒性を最大化することを目的とした。
毒性レベルは、よく訓練された評価モデルを用いて定量化される。
PBI-Attackは3つのオープンソースLVLMの平均攻撃成功率は92.5%であり、3つのクローズドソースLVLMでは67.3%である。
Disclaimer: この論文には、潜在的に乱暴で不快な内容が含まれています。
関連論文リスト
- Prefill-Based Jailbreak: A Novel Approach of Bypassing LLM Safety Boundary [2.4329261266984346]
LLM(Large Language Models)は、有用で安全なコンテンツを生成するように設計されている。
一般的にジェイルブレイクと呼ばれる 敵の攻撃は 安全プロトコルをバイパスできる
LLMのプリフィル機能を利用した新しいジェイルブレイク攻撃手法を提案する。
論文 参考訳(メタデータ) (2025-04-28T07:38:43Z) - JailDAM: Jailbreak Detection with Adaptive Memory for Vision-Language Model [25.204224437843365]
マルチモーダル大規模言語モデル (MLLM) は視覚言語タスクに優れるが、有害なコンテンツを生成する大きなリスクを生じさせる。
ジェイルブレイク攻撃は、モデル内の安全メカニズムを回避し、不適切なコンテンツや安全でないコンテンツを生成する意図的な操作を指す。
JAILDAMと呼ばれるテスト時間適応フレームワークを導入し、これらの問題に対処する。
論文 参考訳(メタデータ) (2025-04-03T05:00:28Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - IDEATOR: Jailbreaking Large Vision-Language Models Using Themselves [67.30731020715496]
ブラックボックスのジェイルブレイク攻撃に対して,悪意のある画像テキストペアを自動生成する新しいジェイルブレイク手法 IDEATOR を提案する。
IDEATORはVLMを使用して、ターゲットとなるJailbreakテキストを作成し、最先端の拡散モデルによって生成されたJailbreakイメージと組み合わせる。
平均5.34クエリでMiniGPT-4をジェイルブレイクし、LLaVA、InstructBLIP、Meta's Chameleonに転送すると82%、88%、75%という高い成功率を達成した。
論文 参考訳(メタデータ) (2024-10-29T07:15:56Z) - BlueSuffix: Reinforced Blue Teaming for Vision-Language Models Against Jailbreak Attacks [62.58434630634917]
VLM(Vision-Language Models)は、脱獄攻撃に弱いことが示されている。
我々は,ブラックボックスターゲットのVLMを,その性能を損なうことなくジェイルブレイク攻撃から防御する,新しいブルーチーム方式のBlueSuffixを提案する。
論文 参考訳(メタデータ) (2024-10-28T12:43:47Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs [34.221522224051846]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃を適応的に行うための適応的位置補充型ジェイルブレイク攻撃手法を提案する。
提案手法は,提案モデルの命令追従能力を利用して,まず安全なコンテンツを出力し,次にその物語シフト能力を利用して有害なコンテンツを生成する。
本手法は,従来の手法と比較して,広く認識されているセキュアモデル(Llama2)において,攻撃成功率を47%向上させることができる。
論文 参考訳(メタデータ) (2024-09-11T00:00:58Z) - BaThe: Defense against the Jailbreak Attack in Multimodal Large Language Models by Treating Harmful Instruction as Backdoor Trigger [47.1955210785169]
本研究では,単純なジェイルブレイク防御機構である$textbfBaTheを提案する。
ジェイルブレイクバックドア攻撃は、手作りの弦と組み合わされた有害な命令をトリガーとして使用し、バックドアモデルが禁止された応答を生成する。
有害な命令がトリガーとして機能し、代わりにリジェクション応答をトリガー応答として設定すれば、バックドアモデルがジェイルブレイク攻撃に対して防御できると仮定する。
論文 参考訳(メタデータ) (2024-08-17T04:43:26Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
我々は、WildTeamingを紹介した。これは自動LLM安全リチームフレームワークで、Wild-Chatbotインタラクションをマイニングし、新しいジェイルブレイク戦術の5.7Kのユニークなクラスタを発見する。
WildTeamingは、未確認のフロンティアLSMの脆弱性を明らかにし、最大4.6倍の多様性と敵の攻撃に成功した。
論文 参考訳(メタデータ) (2024-06-26T17:31:22Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
本稿では,ObscurePrompt for jailbreaking LLMを紹介し,OOD(Out-of-Distribution)データにおける脆弱なアライメントに着想を得た。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
本稿では,テキストと視覚のプロンプトを協調的に最適化することにより,ジェイルブレイクを実行するバイモーダル・アドバイサル・プロンプト・アタック(BAP)を提案する。
特に,大規模言語モデルを用いてジェイルブレイクの失敗を分析し,テキストのプロンプトを洗練させるために連鎖推論を採用する。
論文 参考訳(メタデータ) (2024-06-06T13:00:42Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。