論文の概要: doScenes: An Autonomous Driving Dataset with Natural Language Instruction for Human Interaction and Vision-Language Navigation
- arxiv url: http://arxiv.org/abs/2412.05893v1
- Date: Sun, 08 Dec 2024 11:16:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:57:33.155010
- Title: doScenes: An Autonomous Driving Dataset with Natural Language Instruction for Human Interaction and Vision-Language Navigation
- Title(参考訳): doScenes:ヒューマンインタラクションとビジョンランゲージナビゲーションのための自然言語命令付き自律走行データセット
- Authors: Parthib Roy, Srinivasa Perisetla, Shashank Shriram, Harsha Krishnaswamy, Aryan Keskar, Ross Greer,
- Abstract要約: doScenesは、人間と車両の命令インタラクションの研究を促進するために設計された、新しいデータセットである。
DoScenesは命令と駆動応答のギャップを埋め、コンテキスト認識と適応計画を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Human-interactive robotic systems, particularly autonomous vehicles (AVs), must effectively integrate human instructions into their motion planning. This paper introduces doScenes, a novel dataset designed to facilitate research on human-vehicle instruction interactions, focusing on short-term directives that directly influence vehicle motion. By annotating multimodal sensor data with natural language instructions and referentiality tags, doScenes bridges the gap between instruction and driving response, enabling context-aware and adaptive planning. Unlike existing datasets that focus on ranking or scene-level reasoning, doScenes emphasizes actionable directives tied to static and dynamic scene objects. This framework addresses limitations in prior research, such as reliance on simulated data or predefined action sets, by supporting nuanced and flexible responses in real-world scenarios. This work lays the foundation for developing learning strategies that seamlessly integrate human instructions into autonomous systems, advancing safe and effective human-vehicle collaboration for vision-language navigation. We make our data publicly available at https://www.github.com/rossgreer/doScenes
- Abstract(参考訳): 人間と対話するロボットシステム、特に自律走行車(AV)は、人間の指示を行動計画に効果的に統合する必要がある。
本稿では,車両の動作に直接影響を及ぼす短期的指示に焦点をあて,人間と車両の指示的相互作用の研究を促進するために設計された新しいデータセットであるdoScenesを紹介する。
マルチモーダルセンサデータを自然言語命令と参照度タグでアノテートすることで、doScenesは命令と駆動応答のギャップを埋め、コンテキスト認識と適応計画を可能にする。
ランキングやシーンレベルの推論に重点を置く既存のデータセットとは異なり、doScenesは静的および動的シーンオブジェクトに結びついた実行可能なディレクティブを強調している。
このフレームワークは、シミュレーションされたデータや事前定義されたアクションセットへの依存など、先行研究における制限に対処し、現実のシナリオにおけるニュアンスとフレキシブルな応答をサポートする。
この研究は、人間の指示を自律システムにシームレスに統合し、視覚言語ナビゲーションのための安全で効果的な人間と車両のコラボレーションを促進する学習戦略の基盤となる。
データをhttps://www.github.com/rossgreer/doScenesで公開しています。
関連論文リスト
- Humanoid-VLA: Towards Universal Humanoid Control with Visual Integration [28.825612240280822]
本稿では,言語理解,エゴセントリックなシーン認識,モーションコントロールを統合し,普遍的なヒューマノイド制御を実現する新しいフレームワークを提案する。
Humanoid-VLAは、テキスト記述と組み合わせた非エゴセントリックな人間の動きデータセットを使用して、言語運動の事前アライメントから始まる。
そして、パラメータを効率よくビデオコンディショニングすることで、エゴセントリックな視覚コンテキストを取り入れ、コンテキスト認識モーション生成を可能にする。
論文 参考訳(メタデータ) (2025-02-20T18:17:11Z) - Context-Aware Command Understanding for Tabletop Scenarios [1.7082212774297747]
本稿では,テーブルトップシナリオにおける自然人コマンドの解釈を目的とした,新しいハイブリッドアルゴリズムを提案する。
音声、ジェスチャー、シーンコンテキストを含む複数の情報ソースを統合することにより、ロボットに対して実行可能な指示を抽出する。
システムの長所と短所、特にマルチモーダルコマンド解釈の扱い方について論じる。
論文 参考訳(メタデータ) (2024-10-08T20:46:39Z) - DISCO: Embodied Navigation and Interaction via Differentiable Scene Semantics and Dual-level Control [53.80518003412016]
人間の命令によって多様なタスクに熟練した汎用的なインテリジェントホームアシストエージェントを構築することは、AI研究の長期的青写真である。
本研究では,具体的エージェントに対する原始的移動操作,すなわち指示された動詞と名詞のペアに基づいて,ナビゲートと対話の仕方について検討する。
本研究では、文脈化されたシーンモデリングと効率的な制御における非自明な進歩を特徴とするdisCOを提案する。
論文 参考訳(メタデータ) (2024-07-20T05:39:28Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
我々はLLaRA: Large Language and Robotics Assistantを紹介した。
まず、既存の行動クローニングデータセットからロボットのための会話スタイルの指導データを生成する自動パイプラインを提案する。
このようなデータセットを限定的に微調整したVLMは、ロボット制御において有意義な行動決定を導出できることを示す。
論文 参考訳(メタデータ) (2024-06-28T17:59:12Z) - Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
本稿では,デノナイズ拡散モデルに基づくテキスト制御されたシーン認識動作生成手法TeSMoを提案する。
我々のアプローチは、シーンに依存しないテキスト-モーション拡散モデルの事前学習から始まります。
トレーニングを容易にするため,シーン内に注釈付きナビゲーションと対話動作を組み込む。
論文 参考訳(メタデータ) (2024-04-16T16:04:38Z) - NatSGD: A Dataset with Speech, Gestures, and Demonstrations for Robot
Learning in Natural Human-Robot Interaction [19.65778558341053]
HRIデータセットは、オブジェクトのポインティングやプッシュといった基本的なタスクに重点を置いていることが多い。
音声とジェスチャーによる人間のコマンドを含むマルチモーダルHRIデータセットであるNatSGDを紹介する。
マルチモーダル・ヒューマン・コマンドによるタスク理解のためのロボットの訓練において,その効果を実証する。
論文 参考訳(メタデータ) (2024-03-04T18:02:41Z) - A New Path: Scaling Vision-and-Language Navigation with Synthetic
Instructions and Imitation Learning [70.14372215250535]
VLN(Vision-and-Language Navigation)の最近の研究は、RLエージェントを訓練して、フォトリアリスティックな環境で自然言語ナビゲーション命令を実行する。
人間の指導データが不足し、訓練環境の多様性が限られていることを考えると、これらのエージェントは複雑な言語基盤と空間言語理解に苦慮している。
我々は、密集した360度パノラマで捉えた500以上の屋内環境を取り、これらのパノラマを通して航法軌道を構築し、各軌道に対して視覚的に接地された指示を生成する。
4.2Mの命令-軌道対のデータセットは、既存の人間の注釈付きデータセットよりも2桁大きい。
論文 参考訳(メタデータ) (2022-10-06T17:59:08Z) - LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language,
Vision, and Action [76.71101507291473]
本稿では,無注釈の大規模軌跡データに対するトレーニングの恩恵を享受するロボットナビゲーションシステムLM-Navを提案する。
本研究では,ナビゲーション(ViNG),画像言語アソシエーション(CLIP),言語モデリング(GPT-3)の事前学習モデルから構築可能なシステムについて述べる。
論文 参考訳(メタデータ) (2022-07-10T10:41:50Z) - Reshaping Robot Trajectories Using Natural Language Commands: A Study of
Multi-Modal Data Alignment Using Transformers [33.7939079214046]
我々は、人間とロボットのコラボレーションのための柔軟な言語ベースのインタフェースを提供する。
我々は、ユーザコマンドをエンコードする大規模言語モデルの分野における最近の進歩を生かしている。
言語コマンドによって修正されたロボット軌跡を含むデータセット上で、模倣学習を用いてモデルを訓練する。
論文 参考訳(メタデータ) (2022-03-25T01:36:56Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
本研究では,ロボットインタラクションの大規模なオフラインデータセットから視覚に基づく操作タスクを学習する問題について検討する。
クラウドソースの自然言語ラベルを用いたオフラインロボットデータセットの活用を提案する。
提案手法は目標画像仕様と言語条件付き模倣技術の両方を25%以上上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-02T17:42:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。