論文の概要: Generating Human Interaction Motions in Scenes with Text Control
- arxiv url: http://arxiv.org/abs/2404.10685v1
- Date: Tue, 16 Apr 2024 16:04:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:14:57.610111
- Title: Generating Human Interaction Motions in Scenes with Text Control
- Title(参考訳): テキスト制御によるシーンにおけるヒューマンインタラクション動作の生成
- Authors: Hongwei Yi, Justus Thies, Michael J. Black, Xue Bin Peng, Davis Rempe,
- Abstract要約: 本稿では,デノナイズ拡散モデルに基づくテキスト制御されたシーン認識動作生成手法TeSMoを提案する。
我々のアプローチは、シーンに依存しないテキスト-モーション拡散モデルの事前学習から始まります。
トレーニングを容易にするため,シーン内に注釈付きナビゲーションと対話動作を組み込む。
- 参考スコア(独自算出の注目度): 66.74298145999909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present TeSMo, a method for text-controlled scene-aware motion generation based on denoising diffusion models. Previous text-to-motion methods focus on characters in isolation without considering scenes due to the limited availability of datasets that include motion, text descriptions, and interactive scenes. Our approach begins with pre-training a scene-agnostic text-to-motion diffusion model, emphasizing goal-reaching constraints on large-scale motion-capture datasets. We then enhance this model with a scene-aware component, fine-tuned using data augmented with detailed scene information, including ground plane and object shapes. To facilitate training, we embed annotated navigation and interaction motions within scenes. The proposed method produces realistic and diverse human-object interactions, such as navigation and sitting, in different scenes with various object shapes, orientations, initial body positions, and poses. Extensive experiments demonstrate that our approach surpasses prior techniques in terms of the plausibility of human-scene interactions, as well as the realism and variety of the generated motions. Code will be released upon publication of this work at https://research.nvidia.com/labs/toronto-ai/tesmo.
- Abstract(参考訳): 本稿では,デノナイズ拡散モデルに基づくテキスト制御されたシーン認識動作生成手法TeSMoを提案する。
これまでは、動き、テキスト記述、インタラクティブなシーンを含むデータセットが限られていたため、シーンを考慮せずに、文字を個別にフォーカスしていた。
我々のアプローチは、大規模モーションキャプチャーデータセットにおける目標達成制約を強調する、シーン非依存のテキスト-モーション拡散モデルの事前学習から始まります。
次に,このモデルを,地平面や物体形状などの詳細なシーン情報を含むデータを付加したデータを用いて微調整したシーン認識コンポーネントで拡張する。
トレーニングを容易にするため,シーン内に注釈付きナビゲーションと対話動作を組み込む。
提案手法は, 物体形状, 向き, 初期位置, ポーズの異なる場面で, ナビゲーションや座位などの現実的かつ多様な人間と物体の相互作用を再現する。
大規模な実験により,本手法は人間とシーンの相互作用の妥当性,および生成した動きのリアリズムや多様性の観点から,従来の手法を超越していることが示された。
コードはhttps://research.nvidia.com/labs/toronto-ai/tesmoで公開される。
関連論文リスト
- Instance-Level Moving Object Segmentation from a Single Image with Events [84.12761042512452]
移動対象セグメンテーションは、複数の移動対象を含む動的なシーンを理解する上で重要な役割を果たす。
従来の手法では、物体の画素変位がカメラの動きや物体の動きによって引き起こされるかどうかを区別することが困難であった。
近年の進歩は、従来の画像の不適切な動作モデリング機能に対抗するために、新しいイベントカメラの動作感度を利用する。
補完的なテクスチャとモーションキューを統合した,最初のインスタンスレベルの移動オブジェクトセグメンテーションフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:56:46Z) - SCENIC: Scene-aware Semantic Navigation with Instruction-guided Control [36.22743674288336]
SCENICは仮想シーン内の動的地形に適応する人間の動きを生成するために設計された拡散モデルである。
本システムは,シーン制約を維持しながら,異なる動作スタイル間のシームレスな遷移を実現する。
私たちのコード、データセット、モデルはurlhttps://virtual humans.mpi-inf.mpg.de/scenic/でリリースされます。
論文 参考訳(メタデータ) (2024-12-20T08:25:15Z) - Move-in-2D: 2D-Conditioned Human Motion Generation [54.067588636155115]
そこで我々は,シーンイメージに条件付けされた人間の動作シーケンスを生成する新しい手法であるMove-in-2Dを提案する。
本手法はシーンイメージとテキストプロンプトの両方を入力として受け入れ,シーンに合わせた動作シーケンスを生成する。
論文 参考訳(メタデータ) (2024-12-17T18:58:07Z) - Physics-based Scene Layout Generation from Human Motion [21.939444709132395]
本研究では、シーンレイアウト生成を同時に最適化し、物理シミュレータで動く人間をシミュレートする物理に基づくアプローチを提案する。
我々は、強化学習を用いて、キャラクタ動作模倣コントローラとシーンレイアウトジェネレータの両方の二重最適化を行う。
提案手法は,SAMPとPROXの動作を用いて評価し,従来のキネマティクス法と比較して,物理的に妥当なシーンレイアウトの再構築を示す。
論文 参考訳(メタデータ) (2024-05-21T02:36:37Z) - Generating Human Motion in 3D Scenes from Text Descriptions [60.04976442328767]
本稿では,人間とシーンのインタラクションをテキストで記述した3次元屋内シーンにおけるヒューマンモーション生成の課題に焦点を当てた。
複雑な問題を2つのより管理可能なサブプロブレムに分解する新しい手法を提案する。
対象オブジェクトの言語グラウンド化には、大きな言語モデルのパワーを活用し、モーション生成には、オブジェクト中心のシーン表現を設計する。
論文 参考訳(メタデータ) (2024-05-13T14:30:12Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - Space-Time Diffusion Features for Zero-Shot Text-Driven Motion Transfer [27.278989809466392]
本稿では,対象オブジェクトとシーンを記述する入力テキストプロンプトに準拠する動画を合成する,テキスト駆動型モーショントランスファーの新しい手法を提案する。
我々は、事前に訓練された、固定されたテキスト-ビデオ拡散モデルを活用し、生成および動きの先行情報を提供する。
論文 参考訳(メタデータ) (2023-11-28T18:03:27Z) - Synthesizing Diverse Human Motions in 3D Indoor Scenes [16.948649870341782]
そこで本研究では,仮想人間による3次元屋内シーンの映像化手法を提案する。
既存のアプローチは、キャプチャーされた人間の動きと、それらが相互作用する3Dシーンを含むトレーニングシーケンスに依存している。
仮想人間が3Dシーンをナビゲートし、現実的かつ自律的にオブジェクトと対話できる強化学習ベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-21T09:22:24Z) - Synthesizing Physical Character-Scene Interactions [64.26035523518846]
仮想キャラクタとその周辺環境間のこのような相互作用を合成する必要がある。
本稿では,逆模倣学習と強化学習を用いて物理シミュレーション文字を学習するシステムを提案する。
我々のアプローチは、物理学に基づくキャラクターモーション生成を広い適用性に一歩近づいた。
論文 参考訳(メタデータ) (2023-02-02T05:21:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。