論文の概要: Adversarial Transferability in Deep Denoising Models: Theoretical Insights and Robustness Enhancement via Out-of-Distribution Typical Set Sampling
- arxiv url: http://arxiv.org/abs/2412.05943v1
- Date: Sun, 08 Dec 2024 13:47:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:02.565754
- Title: Adversarial Transferability in Deep Denoising Models: Theoretical Insights and Robustness Enhancement via Out-of-Distribution Typical Set Sampling
- Title(参考訳): ディープデノナイジングモデルの逆転性:分布外典型サンプリングによる理論的洞察とロバスト性向上
- Authors: Jie Ning, Jiebao Sun, Shengzhu Shi, Zhichang Guo, Yao Li, Hongwei Li, Boying Wu,
- Abstract要約: 深層学習に基づく画像認識モデルは優れた性能を示すが、ロバストネス分析の欠如は依然として重要な懸念点である。
主な問題は、これらのモデルが敵攻撃の影響を受けやすいことである。
本稿では,新たな対人防御手法であるOut-of-Distribution typical Set Smpling Training戦略を提案する。
- 参考スコア(独自算出の注目度): 6.189440665620872
- License:
- Abstract: Deep learning-based image denoising models demonstrate remarkable performance, but their lack of robustness analysis remains a significant concern. A major issue is that these models are susceptible to adversarial attacks, where small, carefully crafted perturbations to input data can cause them to fail. Surprisingly, perturbations specifically crafted for one model can easily transfer across various models, including CNNs, Transformers, unfolding models, and plug-and-play models, leading to failures in those models as well. Such high adversarial transferability is not observed in classification models. We analyze the possible underlying reasons behind the high adversarial transferability through a series of hypotheses and validation experiments. By characterizing the manifolds of Gaussian noise and adversarial perturbations using the concept of typical set and the asymptotic equipartition property, we prove that adversarial samples deviate slightly from the typical set of the original input distribution, causing the models to fail. Based on these insights, we propose a novel adversarial defense method: the Out-of-Distribution Typical Set Sampling Training strategy (TS). TS not only significantly enhances the model's robustness but also marginally improves denoising performance compared to the original model.
- Abstract(参考訳): 深層学習に基づく画像認識モデルは優れた性能を示すが、ロバストネス分析の欠如は依然として重要な懸念点である。
主な問題は、これらのモデルが敵攻撃の影響を受けやすいことである。
驚くべきことに、ひとつのモデル用に特別に作られた摂動は、CNN、トランスフォーマー、折り畳みモデル、プラグアンドプレイモデルなど、さまざまなモデルを簡単に移動でき、これらのモデルにも障害が発生する。
このような高い対角移動性は分類モデルでは観察されない。
我々は、一連の仮説と検証実験を通じて、高い対角移動可能性の背後にある潜在的な理由を分析した。
典型的な集合の概念と漸近等分法特性を用いてガウス雑音と逆摂動の多様体を特徴づけることで、逆成分が元の入力分布の典型的な集合からわずかに逸脱していることを証明し、モデルが失敗する。
そこで本研究では,新たな対人防御手法として,アウト・オブ・ディストリビューション(Out-of-Distribution typical Set Smpling Training, TS)を提案する。
TSはモデルの堅牢性を著しく向上するだけでなく、オリジナルのモデルに比べて性能を極端に向上させる。
関連論文リスト
- The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Improving Adversarial Transferability via Model Alignment [25.43899674478279]
本稿では,トランスファー可能な逆方向摂動を生成するためのモデルアライメント手法を提案する。
さまざまなモデルアーキテクチャを用いたImageNetデータセットの実験では、アライメントされたソースモデルから発生する摂動が、転送可能性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-11-30T12:15:49Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Removing Structured Noise with Diffusion Models [14.187153638386379]
拡散モデルによる後方サンプリングの強力なパラダイムは、リッチで構造化されたノイズモデルを含むように拡張可能であることを示す。
構成雑音による様々な逆問題に対して高い性能向上を示し、競争的ベースラインよりも優れた性能を示す。
これにより、非ガウス測度モデルの文脈における逆問題に対する拡散モデリングの新しい機会と関連する実践的応用が開かれる。
論文 参考訳(メタデータ) (2023-01-20T23:42:25Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
フェアネスとロバストネスの間に二分法が存在することを示し、フェアネスを達成するとモデルロバストネスを減少させる。
非線形モデルと異なるアーキテクチャの実験は、複数の視覚領域における理論的発見を検証する。
フェアネスとロバストネスの良好なトレードオフを達成するためのモデルを構築するための,シンプルで効果的なソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-21T19:55:35Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Consistent Counterfactuals for Deep Models [25.1271020453651]
ファクトファクトの例は、金融や医療診断といった重要な領域における機械学習モデルの予測を説明するために使用される。
本稿では,初期訓練条件に小さな変更を加えた深層ネットワークにおける実例に対するモデル予測の整合性について検討する。
論文 参考訳(メタデータ) (2021-10-06T23:48:55Z) - Harnessing Perceptual Adversarial Patches for Crowd Counting [92.79051296850405]
群衆のカウントは、物理的な世界の敵の例に弱い。
本稿では,モデル間での知覚的特徴の共有を学習するためのPAP(Perceptual Adrial Patch)生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:51:39Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Evaluating Neural Machine Comprehension Model Robustness to Noisy Inputs
and Adversarial Attacks [9.36331571226256]
我々は,文字,単語,文レベルで新しい摂動を実行することで,機械理解モデルによる雑音や敵対攻撃に対する頑健さを評価する。
敵攻撃時のモデル誤差を予測するモデルを開発した。
論文 参考訳(メタデータ) (2020-05-01T03:05:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。