Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2501.15468v1
- Date: Sun, 26 Jan 2025 10:13:51 GMT
- Title: Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning
- Authors: Jiawei Huang, Aimin Wang, Geng Sun, Jiahui Li, Jiacheng Wang, Dusit Niyato, Victor C. M. Leung,
- Abstract summary: Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.
Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.
This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
- Score: 72.72954660774002
- License:
- Abstract: Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas. However, extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks. This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle (UAV) to ensure data security at the physical layer. Since such a system requires trade-off policies that balance the secrecy rate and energy consumption of the UAV to meet evolving scenario demands, we formulate a secure satellite-maritime communication multi-objective optimization problem (SSMCMOP). In order to solve the dynamic and long-term optimization problem, we reformulate it into a Markov decision process. We then propose a transformer-enhanced soft actor critic (TransSAC) algorithm, which is a generative artificial intelligence-enable deep reinforcement learning approach to solve the reformulated problem, so that capturing global dependencies and diversely exploring weights. Simulation results demonstrate that the TransSAC outperforms various baselines, and achieves an optimal secrecy rate while effectively minimizing the energy consumption of the UAV. Moreover, the results find more suitable constraint values for the system.
Related papers
- Dual UAV Cluster-Assisted Maritime Physical Layer Secure Communications via Collaborative Beamforming [47.191944685913036]
Unmanned aerial vehicles (UAVs) can be utilized as relay platforms to assist maritime wireless communications.
Collaborative beamforming (CB) can enhance the signal strength and range to assist the UAV relay for remote maritime communications.
This paper proposes a dual UAV cluster-assisted system via CB to achieve physical layer security in maritime wireless communications.
arXiv Detail & Related papers (2024-12-08T14:11:02Z) - Integrated Sensing and Communications for Low-Altitude Economy: A Deep Reinforcement Learning Approach [20.36806314683902]
We study an integrated sensing and communications (ISAC) system for low-altitude economy (LAE)
The expected communication sum-rate over a given flight period is maximized by jointly optimizing the beamforming at the GBS and UAVs' trajectories.
We propose a novel LAE-oriented ISAC scheme, referred to as Deep LAE-ISAC (DeepLSC), by leveraging the deep reinforcement learning (DRL) technique.
arXiv Detail & Related papers (2024-12-05T11:12:46Z) - Latency Optimization in LEO Satellite Communications with Hybrid Beam Pattern and Interference Control [20.19239663262141]
Low Earth orbit (LEO) satellite communication systems offer high-capacity, low-latency services crucial for next-generation applications.
The dense configuration of LEO constellations poses challenges in resource allocation optimization and interference management.
This paper proposes a novel framework for optimizing the beam scheduling and resource allocation in multi-beam LEO systems.
arXiv Detail & Related papers (2024-11-14T17:18:24Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.