On Socially Fair Low-Rank Approximation and Column Subset Selection
- URL: http://arxiv.org/abs/2412.06063v1
- Date: Sun, 08 Dec 2024 20:34:16 GMT
- Title: On Socially Fair Low-Rank Approximation and Column Subset Selection
- Authors: Zhao Song, Ali Vakilian, David P. Woodruff, Samson Zhou,
- Abstract summary: Low-rank approximation and column subset selection are two fundamental and related problems that are applied across a wealth of machine learning applications.
We show that surprisingly, even constant-factor approximation fair low-rank approximation requires exponential time under certain standard complexity hypotheses.
We give an algorithm for fair low-rank approximation that, for a constant number of groups and constant-factor accuracy, runs in $2textpoly(k)$ time rather than the na"ive $ntextpoly(k)$.
- Score: 62.44413238556872
- License:
- Abstract: Low-rank approximation and column subset selection are two fundamental and related problems that are applied across a wealth of machine learning applications. In this paper, we study the question of socially fair low-rank approximation and socially fair column subset selection, where the goal is to minimize the loss over all sub-populations of the data. We show that surprisingly, even constant-factor approximation to fair low-rank approximation requires exponential time under certain standard complexity hypotheses. On the positive side, we give an algorithm for fair low-rank approximation that, for a constant number of groups and constant-factor accuracy, runs in $2^{\text{poly}(k)}$ time rather than the na\"{i}ve $n^{\text{poly}(k)}$, which is a substantial improvement when the dataset has a large number $n$ of observations. We then show that there exist bicriteria approximation algorithms for fair low-rank approximation and fair column subset selection that run in polynomial time.
Related papers
- Minimax and Communication-Efficient Distributed Best Subset Selection with Oracle Property [0.358439716487063]
The explosion of large-scale data has outstripped the processing capabilities of single-machine systems.
Traditional approaches to distributed inference often struggle with achieving true sparsity in high-dimensional datasets.
We propose a novel, two-stage, distributed best subset selection algorithm to address these issues.
arXiv Detail & Related papers (2024-08-30T13:22:08Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Minimax Optimal Algorithms with Fixed-$k$-Nearest Neighbors [13.231906521852718]
We consider a distributed learning scenario in which a massive dataset is split into smaller groups.
We propose emphoptimal rules to aggregate the fixed-$k$-NN information for classification, regression, and density estimation.
We show that the distributed algorithm with a fixed $k$ over a sufficiently large number of groups attains a minimax optimal error rate up to a multiplicative logarithmic factor.
arXiv Detail & Related papers (2022-02-05T01:59:09Z) - Faster Algorithms and Constant Lower Bounds for the Worst-Case Expected
Error [0.3997680012976965]
The goal is to design estimators that minimize the worst-case expected error.
Chen, Valiant and Valiant show that, when data values are $ell_infty$-normalized, there is a time algorithm to compute an estimator for the mean.
In this paper we design provably efficient algorithms for approximating the optimal semilinear estimator based on online convex optimization.
arXiv Detail & Related papers (2021-12-27T18:47:25Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers [59.06169363181417]
Predict then Interpolate (PI) is an algorithm for learning correlations that are stable across environments.
We prove that by interpolating the distributions of the correct predictions and the wrong predictions, we can uncover an oracle distribution where the unstable correlation vanishes.
arXiv Detail & Related papers (2021-05-26T15:37:48Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
We consider active learning for binary classification in the agnostic pool-based setting.
Our algorithm is superior to state of the art active learning algorithms on image classification datasets.
arXiv Detail & Related papers (2021-05-13T18:24:30Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.