Self-supervised cost of transport estimation for multimodal path planning
- URL: http://arxiv.org/abs/2412.06101v1
- Date: Sun, 08 Dec 2024 23:02:35 GMT
- Title: Self-supervised cost of transport estimation for multimodal path planning
- Authors: Vincent Gherold, Ioannis Mandralis, Eric Sihite, Adarsh Salagame, Alireza Ramezani, Morteza Gharib,
- Abstract summary: We develop a self-supervised learning method that allows the robot to estimate the cost of transport of its surroundings.
We apply our method to the multi-modal mobility morphobot (M4), a robot that can drive, fly, segway, and crawl through its environment.
We highlight the low computational cost of our method, which is deployed on an Nvidia Jetson Orin Nano robotic compute unit.
- Score: 5.097982452032821
- License:
- Abstract: Autonomous robots operating in real environments are often faced with decisions on how best to navigate their surroundings. In this work, we address a particular instance of this problem: how can a robot autonomously decide on the energetically optimal path to follow given a high-level objective and information about the surroundings? To tackle this problem we developed a self-supervised learning method that allows the robot to estimate the cost of transport of its surroundings using only vision inputs. We apply our method to the multi-modal mobility morphobot (M4), a robot that can drive, fly, segway, and crawl through its environment. By deploying our system in the real world, we show that our method accurately assigns different cost of transports to various types of environments e.g. grass vs smooth road. We also highlight the low computational cost of our method, which is deployed on an Nvidia Jetson Orin Nano robotic compute unit. We believe that this work will allow multi-modal robotic platforms to unlock their full potential for navigation and exploration tasks.
Related papers
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
arXiv Detail & Related papers (2023-07-07T17:21:16Z) - ALAN: Autonomously Exploring Robotic Agents in the Real World [28.65531878636441]
ALAN is an autonomously exploring robotic agent that can perform tasks in the real world with little training and interaction time.
This is enabled by measuring environment change, which reflects object movement and ignores changes in the robot position.
We evaluate our approach on two different real-world play kitchen settings, enabling a robot to efficiently explore and discover manipulation skills.
arXiv Detail & Related papers (2023-02-13T18:59:09Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Learning Semantics-Aware Locomotion Skills from Human Demonstration [35.996425893483796]
We present a framework that learns semantics-aware locomotion skills from perception for quadrupedal robots.
Our framework learns to adjust the speed and gait of the robot based on perceived terrain semantics, and enables the robot to walk over 6km without failure.
arXiv Detail & Related papers (2022-06-27T21:08:03Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
We exploit the complementary strengths of vision and proprioception to achieve point goal navigation in a legged robot.
We show superior performance compared to wheeled robot (LoCoBot) baselines.
We also show the real-world deployment of our system on a quadruped robot with onboard sensors and compute.
arXiv Detail & Related papers (2021-12-03T18:59:59Z) - An Embarrassingly Pragmatic Introduction to Vision-based Autonomous
Robots [0.0]
We develop a small-scale autonomous vehicle capable of understanding the scene using only visual information.
We discuss the current state of Robotics and autonomous driving and the technological and ethical limitations that we can find in this field.
arXiv Detail & Related papers (2021-11-15T01:31:28Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
We propose a neural motion planner (NMP) for learning to drive autonomously in complex urban scenarios.
We design a holistic model that takes as input raw LIDAR data and a HD map and produces interpretable intermediate representations.
We demonstrate the effectiveness of our approach in real-world driving data captured in several cities in North America.
arXiv Detail & Related papers (2021-01-17T14:16:12Z) - Visual Navigation in Real-World Indoor Environments Using End-to-End
Deep Reinforcement Learning [2.7071541526963805]
We propose a novel approach that enables a direct deployment of the trained policy on real robots.
The policy is fine-tuned on images collected from real-world environments.
In 30 navigation experiments, the robot reached a 0.3-meter neighborhood of the goal in more than 86.7% of cases.
arXiv Detail & Related papers (2020-10-21T11:22:30Z) - Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots [5.739787445246959]
We propose a novel planning method that can efficiently estimate the order and positions of the objects to be tidied up by learning the parameters of a probabilistic generative model.
The model allows a robot to learn the distributions of the co-occurrence probability of the objects and places to tidy up using the multimodal sensor information collected in a tidied environment.
We evaluate the effectiveness of the proposed method by an experimental simulation that reproduces the conditions of the Tidy Up Here task of the World Robot Summit 2018 international robotics competition.
arXiv Detail & Related papers (2020-02-10T11:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.