Spiking Neural Networks for Radio Frequency Interference Detection in Radio Astronomy
- URL: http://arxiv.org/abs/2412.06124v1
- Date: Mon, 09 Dec 2024 01:02:30 GMT
- Title: Spiking Neural Networks for Radio Frequency Interference Detection in Radio Astronomy
- Authors: Nicholas J. Pritchard, Andreas Wicenec, Mohammed Bennamoun, Richard Dodson,
- Abstract summary: Spiking Neural Networks (SNNs) promise efficienttemporal data processing owing to their dynamic nature.
This paper addresses a significant challenge in radio astronomy, Radio Frequency Interference (RFI) detection.
We introduce a divisive normalisation-inspired pre-processing step, which improves RF detection performance.
To our knowledge, this work is the first to train SNNs on real radio astronomy data successfully.
- Score: 25.08630315149258
- License:
- Abstract: Spiking Neural Networks (SNNs) promise efficient spatio-temporal data processing owing to their dynamic nature. This paper addresses a significant challenge in radio astronomy, Radio Frequency Interference (RFI) detection, by reformulating it as a time-series segmentation task inherently suited for SNN execution. Automated RFI detection systems capable of real-time operation with minimal energy consumption are increasingly important in modern radio telescopes. We explore several spectrogram-to-spike encoding methods and network parameters, applying first-order leaky integrate-and-fire SNNs to tackle RFI detection. To enhance the contrast between RFI and background information, we introduce a divisive normalisation-inspired pre-processing step, which improves detection performance across multiple encoding strategies. Our approach achieves competitive performance on a synthetic dataset and compelling results on real data from the Low-Frequency Array (LOFAR) instrument. To our knowledge, this work is the first to train SNNs on real radio astronomy data successfully. These findings highlight the potential of SNNs for performing complex time-series tasks, paving the way for efficient, real-time processing in radio astronomy and other data-intensive fields.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.
embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.
split computing - where an SNN is partitioned across two devices - is a promising solution.
This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - Supervised Radio Frequency Interference Detection with SNNs [25.08630315149258]
Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes.
Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach.
We study the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm.
arXiv Detail & Related papers (2024-06-10T07:49:51Z) - RFI Detection with Spiking Neural Networks [25.08630315149258]
This study introduces first exploratory application of Spiking Neural Networks (SNNs) to an astronomical dataprocessing task, specifically RFI detection.
We adapt the nearest-latentneighbours algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion.
Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets.
arXiv Detail & Related papers (2023-11-24T06:27:08Z) - Fusing Event-based Camera and Radar for SLAM Using Spiking Neural
Networks with Continual STDP Learning [7.667590910539249]
This work proposes a first-of-its-kind SLAM architecture fusing an event-based camera and a Frequency Modulated Continuous Wave (FMCW) radar for drone navigation.
Each sensor is processed by a bio-inspired Spiking Neural Network (SNN) with continual Spike-Timing-Dependent Plasticity (STDP) learning.
We conduct numerous experiments to benchmark our system against state-of-the-art RGB methods and we demonstrate the robustness of our DVS-Radar SLAM approach.
arXiv Detail & Related papers (2022-10-09T12:05:19Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.