RFI Detection with Spiking Neural Networks
- URL: http://arxiv.org/abs/2311.14303v2
- Date: Fri, 22 Mar 2024 10:54:09 GMT
- Title: RFI Detection with Spiking Neural Networks
- Authors: Nicholas J. Pritchard, Andreas Wicenec, Mohammed Bennamoun, Richard Dodson,
- Abstract summary: This study introduces first exploratory application of Spiking Neural Networks (SNNs) to an astronomical dataprocessing task, specifically RFI detection.
We adapt the nearest-latentneighbours algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion.
Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets.
- Score: 25.08630315149258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and mitigating Radio Frequency Interference (RFI) is critical for enabling and maximising the scientific output of radio telescopes. The emergence of machine learning methods has led to their application in radio astronomy, and in RFI detection. Spiking Neural Networks (SNNs), inspired by biological systems, are well-suited for processing spatio-temporal data. This study introduces the first exploratory application of SNNs to an astronomical data-processing task, specifically RFI detection. We adapt the nearest-latent-neighbours (NLN) algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion, enabling simplified downstream RFI detection by sampling the naturally varying latent space from the internal spiking neurons. Our subsequent evaluation aims to determine whether SNNs are viable for future RFI detection schemes. We evaluate detection performance with the simulated HERA telescope and hand-labelled LOFAR observation dataset the original authors provided. We additionally evaluate detection performance with a new MeerKAT-inspired simulation dataset that provides a technical challenge for machine-learnt RFI detection methods. This dataset focuses on satellite-based RFI, an increasingly important class of RFI and is an additional contribution. Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets. Our method maintains this accuracy while completely removing the compute and memory-intense latent sampling step found in NLN. This work demonstrates the viability of SNNs as a promising avenue for machine-learning-based RFI detection in radio telescopes by establishing a minimal performance baseline on traditional and nascent satellite-based RFI sources and is the first work to our knowledge to apply SNNs in astronomy.
Related papers
- Towards xAI: Configuring RNN Weights using Domain Knowledge for MIMO Receive Processing [19.995241682744567]
We advance the field of Explainable AI (xAI) in the physical layer of wireless communications.
We focus on the task of.
MIMO-OFDM receive processing (e.g., symbol detection) using reservoir computing (RC), a framework.
within recurrent neural networks (RNNs)
Our analysis provides a signal processing-based, first-principles understanding of the corresponding operation of RC.
arXiv Detail & Related papers (2024-10-09T17:16:11Z) - Supervised Radio Frequency Interference Detection with SNNs [25.08630315149258]
Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes.
Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach.
We study the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm.
arXiv Detail & Related papers (2024-06-10T07:49:51Z) - Fusing Event-based Camera and Radar for SLAM Using Spiking Neural
Networks with Continual STDP Learning [7.667590910539249]
This work proposes a first-of-its-kind SLAM architecture fusing an event-based camera and a Frequency Modulated Continuous Wave (FMCW) radar for drone navigation.
Each sensor is processed by a bio-inspired Spiking Neural Network (SNN) with continual Spike-Timing-Dependent Plasticity (STDP) learning.
We conduct numerous experiments to benchmark our system against state-of-the-art RGB methods and we demonstrate the robustness of our DVS-Radar SLAM approach.
arXiv Detail & Related papers (2022-10-09T12:05:19Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z) - Volterra Neural Networks (VNNs) [24.12314339259243]
We propose a Volterra filter-inspired Network architecture to reduce the complexity of Convolutional Neural Networks.
We show an efficient parallel implementation of this Volterra Neural Network (VNN) along with its remarkable performance.
The proposed approach is evaluated on UCF-101 and HMDB-51 datasets for action recognition, and is shown to outperform state of the art CNN approaches.
arXiv Detail & Related papers (2019-10-21T19:22:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.