Advancing RFI-Detection in Radio Astronomy with Liquid State Machines
- URL: http://arxiv.org/abs/2504.09796v1
- Date: Mon, 14 Apr 2025 01:51:01 GMT
- Title: Advancing RFI-Detection in Radio Astronomy with Liquid State Machines
- Authors: Nicholas J Pritchard, Andreas Wicenec, Mohammed Bennamoun, Richard Dodson,
- Abstract summary: Radio Frequency Interference (RFI) from anthropogenic radio sources poses significant challenges to current and future radio telescopes.<n>In this work, we apply Liquid State Machines (LSMs), a class of spiking networks, to RFI-detection.<n>We train LSMs on simulated data derived from the Hyrogen Epoch of Reionization Array (HERA), a known benchmark for RFI-detection.<n>Our model achieves a per-pixel accuracy of 98% and an F1-Integrate of 0.743, demonstrating competitive performance on this highly challenging task.
- Score: 25.08630315149258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radio Frequency Interference (RFI) from anthropogenic radio sources poses significant challenges to current and future radio telescopes. Contemporary approaches to detecting RFI treat the task as a semantic segmentation problem on radio telescope spectrograms. Typically, complex heuristic algorithms handle this task of `flagging' in combination with manual labeling (in the most difficult cases). While recent machine-learning approaches have demonstrated high accuracy, they often fail to meet the stringent operational requirements of modern radio observatories. Owing to their inherently time-varying nature, spiking neural networks (SNNs) are a promising alternative method to RFI-detection by utilizing the time-varying nature of the spectrographic source data. In this work, we apply Liquid State Machines (LSMs), a class of spiking neural networks, to RFI-detection. We employ second-order Leaky Integrate-and-Fire (LiF) neurons, marking the first use of this architecture and neuron type for RFI-detection. We test three encoding methods and three increasingly complex readout layers, including a transformer decoder head, providing a hybrid of SNN and ANN techniques. Our methods extend LSMs beyond conventional classification tasks to fine-grained spatio-temporal segmentation. We train LSMs on simulated data derived from the Hyrogen Epoch of Reionization Array (HERA), a known benchmark for RFI-detection. Our model achieves a per-pixel accuracy of 98% and an F1-score of 0.743, demonstrating competitive performance on this highly challenging task. This work expands the sophistication of SNN techniques and architectures applied to RFI-detection, and highlights the effectiveness of LSMs in handling fine-grained, complex, spatio-temporal signal-processing tasks.
Related papers
- A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network [9.031267813814118]
Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies.
This paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework.
arXiv Detail & Related papers (2025-02-25T04:34:18Z) - Spiking Neural Networks for Radio Frequency Interference Detection in Radio Astronomy [25.08630315149258]
Spiking Neural Networks (SNNs) promise efficienttemporal data processing owing to their dynamic nature.<n>This paper addresses a significant challenge in radio astronomy, Radio Frequency Interference (RFI) detection.<n>We introduce a divisive normalisation-inspired pre-processing step, which improves RF detection performance.<n>To our knowledge, this work is the first to train SNNs on real radio astronomy data successfully.
arXiv Detail & Related papers (2024-12-09T01:02:30Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - Supervised Radio Frequency Interference Detection with SNNs [25.08630315149258]
Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes.<n>Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach.<n>We study the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm.
arXiv Detail & Related papers (2024-06-10T07:49:51Z) - RFI Detection with Spiking Neural Networks [25.08630315149258]
This study introduces first exploratory application of Spiking Neural Networks (SNNs) to an astronomical dataprocessing task, specifically RFI detection.
We adapt the nearest-latentneighbours algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion.
Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets.
arXiv Detail & Related papers (2023-11-24T06:27:08Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
Random functional-linked neural networks (RFLNNs) offer an alternative way of learning in deep structure.
This paper gives some insights into the properties of RFLNNs from the viewpoints of frequency domain.
We propose a method to generate a BLS network with better performance, and design an efficient algorithm for solving Poison's equation.
arXiv Detail & Related papers (2023-04-03T13:25:22Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.