Enhancing Adversarial Resistance in LLMs with Recursion
- URL: http://arxiv.org/abs/2412.06181v1
- Date: Mon, 09 Dec 2024 03:34:49 GMT
- Title: Enhancing Adversarial Resistance in LLMs with Recursion
- Authors: Bryan Li, Sounak Bagchi, Zizhan Wang,
- Abstract summary: This project proposes a framework for enhancing the resistance of Large Language Models to manipulation.
By increasing the transparency of complex and confusing adversarial prompts, the proposed method enables more reliable detection and prevention of malicious inputs.
- Score: 7.410680179234572
- License:
- Abstract: The increasing integration of Large Language Models (LLMs) into society necessitates robust defenses against vulnerabilities from jailbreaking and adversarial prompts. This project proposes a recursive framework for enhancing the resistance of LLMs to manipulation through the use of prompt simplification techniques. By increasing the transparency of complex and confusing adversarial prompts, the proposed method enables more reliable detection and prevention of malicious inputs. Our findings attempt to address a critical problem in AI safety and security, providing a foundation for the development of systems able to distinguish harmless inputs from prompts containing malicious intent. As LLMs continue to be used in diverse applications, the importance of such safeguards will only grow.
Related papers
- Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking [26.812138599896997]
We propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates safety reflections of queries and responses into LLM's generation process.
R2D effectively mitigates various attacks and improves overall safety, highlighting the substantial potential of safety-aware reasoning in strengthening LLMs' robustness against jailbreaks.
arXiv Detail & Related papers (2025-02-18T15:48:46Z) - Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning [21.423429565221383]
Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats.
We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced textitreasoning capabilities of LLMs for proactive assessment of harmful inputs.
arXiv Detail & Related papers (2025-01-31T14:45:23Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.
This vulnerability poses significant risks to the real-world applications.
We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.
This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - SoK: Prompt Hacking of Large Language Models [5.056128048855064]
The safety and robustness of large language models (LLMs) based applications remain critical challenges in artificial intelligence.
We offer a comprehensive and systematic overview of three distinct types of prompt hacking: jailbreaking, leaking, and injection.
We propose a novel framework that categorizes LLM responses into five distinct classes, moving beyond the traditional binary classification.
arXiv Detail & Related papers (2024-10-16T01:30:41Z) - Tamper-Resistant Safeguards for Open-Weight LLMs [57.90526233549399]
We develop a method for building tamper-resistant safeguards into open-weight LLMs.
We find that our method greatly improves tamper-resistance while preserving benign capabilities.
arXiv Detail & Related papers (2024-08-01T17:59:12Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Signed-Prompt: A New Approach to Prevent Prompt Injection Attacks
Against LLM-Integrated Applications [0.0]
This paper introduces the 'Signed-Prompt' method as a novel solution for prompt injection attacks.
The study involves signing sensitive instructions within command segments by authorized users, enabling the LLM to discern trusted instruction sources.
Experiments demonstrate the effectiveness of the Signed-Prompt method, showing substantial resistance to various types of prompt injection attacks.
arXiv Detail & Related papers (2024-01-15T11:44:18Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.