On the Robustness of Verbal Confidence of LLMs in Adversarial Attacks
- URL: http://arxiv.org/abs/2507.06489v1
- Date: Wed, 09 Jul 2025 02:19:46 GMT
- Title: On the Robustness of Verbal Confidence of LLMs in Adversarial Attacks
- Authors: Stephen Obadinma, Xiaodan Zhu,
- Abstract summary: We present the first comprehensive study on the robustness of verbal confidence under adversarial attacks.<n>We introduce a novel framework for attacking verbal confidence scores through both perturbation and jailbreak-based methods.<n>Our findings underscore the urgent need to design more robust mechanisms for confidence expression in large language models.
- Score: 23.95254828487318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust verbal confidence generated by large language models (LLMs) is crucial for the deployment of LLMs to ensure transparency, trust, and safety in human-AI interactions across many high-stakes applications. In this paper, we present the first comprehensive study on the robustness of verbal confidence under adversarial attacks. We introduce a novel framework for attacking verbal confidence scores through both perturbation and jailbreak-based methods, and show that these attacks can significantly jeopardize verbal confidence estimates and lead to frequent answer changes. We examine a variety of prompting strategies, model sizes, and application domains, revealing that current confidence elicitation methods are vulnerable and that commonly used defence techniques are largely ineffective or counterproductive. Our findings underscore the urgent need to design more robust mechanisms for confidence expression in LLMs, as even subtle semantic-preserving modifications can lead to misleading confidence in responses.
Related papers
- ICLShield: Exploring and Mitigating In-Context Learning Backdoor Attacks [61.06621533874629]
In-context learning (ICL) has demonstrated remarkable success in large language models (LLMs)<n>In this paper, we propose, for the first time, the dual-learning hypothesis, which posits that LLMs simultaneously learn both the task-relevant latent concepts and backdoor latent concepts.<n>Motivated by these findings, we propose ICLShield, a defense mechanism that dynamically adjusts the concept preference ratio.
arXiv Detail & Related papers (2025-07-02T03:09:20Z) - Attention Knows Whom to Trust: Attention-based Trust Management for LLM Multi-Agent Systems [52.57826440085856]
Large Language Model-based Multi-Agent Systems (LLM-MAS) have demonstrated strong capabilities in solving complex tasks but remain vulnerable when agents receive unreliable messages.<n>This vulnerability stems from a fundamental gap: LLM agents treat all incoming messages equally without evaluating their trustworthiness.<n>We propose Attention Trust Score (A-Trust), a lightweight, attention-based method for evaluating message trustworthiness.
arXiv Detail & Related papers (2025-06-03T07:32:57Z) - Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking [26.812138599896997]
We propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates a safety-aware reasoning mechanism into Large Language Models' generation.<n>R2D forms safety pivot tokens as indicators of the safety status of responses.<n>We show that R2D effectively mitigates various attacks and improves overall safety, while maintaining the original performances.
arXiv Detail & Related papers (2025-02-18T15:48:46Z) - Enhancing Adversarial Resistance in LLMs with Recursion [7.410680179234572]
This project proposes a framework for enhancing the resistance of Large Language Models to manipulation.<n>By increasing the transparency of complex and confusing adversarial prompts, the proposed method enables more reliable detection and prevention of malicious inputs.
arXiv Detail & Related papers (2024-12-09T03:34:49Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.<n>This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Adversarial Attacks and Defense for Conversation Entailment Task [0.49157446832511503]
Large language models are vulnerable to low-cost adversarial attacks.
We fine-tune a transformer model to accurately discern the truthfulness of hypotheses.
We introduce an embedding perturbation loss method to bolster the model's robustness.
arXiv Detail & Related papers (2024-05-01T02:49:18Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
We propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD)
It integrates quality reward and order-preserving alignment reward functions.
Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy.
arXiv Detail & Related papers (2024-04-26T09:42:46Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
We propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers.
Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer.
This framework can be seamlessly integrated with existing approaches for superior self-detection.
arXiv Detail & Related papers (2024-03-15T02:38:26Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - How Trustworthy are Open-Source LLMs? An Assessment under Malicious Demonstrations Shows their Vulnerabilities [37.14654106278984]
We conduct an adversarial assessment of open-source Large Language Models (LLMs) on trustworthiness.
We propose advCoU, an extended Chain of Utterances-based (CoU) prompting strategy by incorporating carefully crafted malicious demonstrations for trustworthiness attack.
Our experiments encompass recent and representative series of open-source LLMs, including Vicuna, MPT, Falcon, Mistral, and Llama 2.
arXiv Detail & Related papers (2023-11-15T23:33:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.