Your Data Is Not Perfect: Towards Cross-Domain Out-of-Distribution Detection in Class-Imbalanced Data
- URL: http://arxiv.org/abs/2412.06284v1
- Date: Mon, 09 Dec 2024 08:03:28 GMT
- Title: Your Data Is Not Perfect: Towards Cross-Domain Out-of-Distribution Detection in Class-Imbalanced Data
- Authors: Xiang Fang, Arvind Easwaran, Blaise Genest, Ponnuthurai Nagaratnam Suganthan,
- Abstract summary: We introduce a realistic yet challenging setting: class-imbalanced cross-domain OOD detection.
We propose a novel uncertainty-aware adaptive semantic alignment (UASA) network based on a prototype-based alignment strategy.
Our proposed UASA outperforms state-of-the-art methods by a large margin.
- Score: 10.200872243175183
- License:
- Abstract: Previous OOD detection systems only focus on the semantic gap between ID and OOD samples. Besides the semantic gap, we are faced with two additional gaps: the domain gap between source and target domains, and the class-imbalance gap between different classes. In fact, similar objects from different domains should belong to the same class. In this paper, we introduce a realistic yet challenging setting: class-imbalanced cross-domain OOD detection (CCOD), which contains a well-labeled (but usually small) source set for training and conducts OOD detection on an unlabeled (but usually larger) target set for testing. We do not assume that the target domain contains only OOD classes or that it is class-balanced: the distribution among classes of the target dataset need not be the same as the source dataset. To tackle this challenging setting with an OOD detection system, we propose a novel uncertainty-aware adaptive semantic alignment (UASA) network based on a prototype-based alignment strategy. Specifically, we first build label-driven prototypes in the source domain and utilize these prototypes for target classification to close the domain gap. Rather than utilizing fixed thresholds for OOD detection, we generate adaptive sample-wise thresholds to handle the semantic gap. Finally, we conduct uncertainty-aware clustering to group semantically similar target samples to relieve the class-imbalance gap. Extensive experiments on three challenging benchmarks demonstrate that our proposed UASA outperforms state-of-the-art methods by a large margin.
Related papers
- Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
Semi-supervised domain adaptation (SSDA) aims to bridge source and target domain distributions, with a small number of target labels available.
Existing SSDA work fails to make full use of label information from both source and target domains for feature alignment across domains.
This paper presents a novel SSDA approach, Inter-domain Mixup with Neighborhood Expansion (IDMNE), to tackle this issue.
arXiv Detail & Related papers (2024-01-21T10:20:46Z) - centroIDA: Cross-Domain Class Discrepancy Minimization Based on
Accumulative Class-Centroids for Imbalanced Domain Adaptation [17.97306640457707]
We propose a cross-domain class discrepancy minimization method based on accumulative class-centroids for IDA (centroIDA)
A series of experiments have proved that our method outperforms other SOTA methods on IDA problem, especially with the increasing degree of label shift.
arXiv Detail & Related papers (2023-08-21T10:35:32Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Cycle Label-Consistent Networks for Unsupervised Domain Adaptation [57.29464116557734]
Domain adaptation aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution.
We propose a simple yet efficient domain adaptation method, i.e. Cycle Label-Consistent Network (CLCN), by exploiting the cycle consistency of classification label.
We demonstrate the effectiveness of our approach on MNIST-USPS-SVHN, Office-31, Office-Home and Image CLEF-DA benchmarks.
arXiv Detail & Related papers (2022-05-27T13:09:08Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data.
Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations.
We propose a joint adaptive detection framework (JADF) to address the above challenges.
arXiv Detail & Related papers (2021-09-19T00:27:08Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain
Adaptation [22.852237073492894]
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain.
We propose a cross-domain discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples.
In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning.
arXiv Detail & Related papers (2021-06-08T07:35:40Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA) attempts to recognize the unlabeled target samples by building a learning model from a differently-distributed labeled source domain.
In this paper, we propose a novel Adrial Dual Distincts Network (AD$2$CN) to align the source and target domain data distribution simultaneously with matching task-specific category boundaries.
To be specific, a domain-invariant feature generator is exploited to embed the source and target data into a latent common space with the guidance of discriminative cross-domain alignment.
arXiv Detail & Related papers (2020-08-27T01:29:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.