論文の概要: Determining Absolute Neutrino Mass using Quantum Technologies
- arxiv url: http://arxiv.org/abs/2412.06338v1
- Date: Mon, 09 Dec 2024 09:41:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:53.998244
- Title: Determining Absolute Neutrino Mass using Quantum Technologies
- Title(参考訳): 量子技術を用いた絶対ニュートリノ質量の決定
- Authors: A. A. S. Amad, F. F. Deppisch, M. Fleck, J. Gallop, T. Goffrey, L. Hao, N. Higginbotham, S. D. Hogan, S. B. Jones, L. Li, N. McConkey, V. Monachello, R. Nichol, J. A. Potter, Y. Ramachers, R. Saakyan, E. Sedzielewski, D. Swinnock, D. Waters, S. Withington, S. Zhao, J. Zou,
- Abstract要約: 絶対ニュートリノ質量を決定するための次世代のトリチウム崩壊実験は、$beta$-decay電子エネルギーの高精度な測定を必要とする。
量子制限型マイクロ波増幅器は正確なサイクロトロン周波数測定を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Next generation tritium decay experiments to determine the absolute neutrino mass require high-precision measurements of $\beta$-decay electron energies close to the kinematic end point. To achieve this, the development of high phase-space density sources of atomic tritium is required, along with the implementation of methods to control the motion of these atoms to allow extended observation times. A promising approach to efficiently and accurately measure the kinetic energies of individual $\beta$-decay electrons generated in these dilute atomic gases, is to determine the frequency of the cyclotron radiation they emit in a precisely characterised magnetic field. This cyclotron radiation emission spectroscopy (CRES) technique can benefit from recent developments in quantum technologies. Absolute static-field magnetometry and electrometry, which is essential for the precise determination of the electron kinetic energies from the frequency of their emitted cyclotron radiation, can be performed using atoms in superpositions of circular Rydberg states. Quantum-limited microwave amplifiers will allow precise cyclotron frequency measurements to be made with maximal signal-to-noise ratios and minimal observation times. Exploiting the opportunities offered by quantum technologies in these key areas, represents the core activity of the Quantum Technologies for Neutrino Mass (QTNM) project. Its goal is to develop a new experimental apparatus that can enable a determination of the absolute neutrino mass with a sensitivity on the order of 10~meV/$c^2$.
- Abstract(参考訳): 絶対ニュートリノ質量を決定するための次世代のトリチウム崩壊実験では、キネマティック終点に近い$\beta$-decay電子エネルギーの高精度な測定が必要である。
これを実現するためには、原子トリチウムの高相空間密度源の開発と、これらの原子の動きを制御して観測時間を延ばす方法の実装が必要である。
これらの希薄な原子ガスで生成される個々の$\beta$-decay電子の運動エネルギーを効率よく正確に測定するための有望なアプローチは、正確に特徴づけられた磁場で放射されるサイクロトロン放射の周波数を決定することである。
このサイクロトロン放射分光法(CRES)技術は、近年の量子技術の発展の恩恵を受けることができる。
放射されるサイクロトロン放射の周波数から電子の運動エネルギーを正確に決定するために必須である絶対静磁場磁気メトリーと電気測定は、円形のリドバーグ状態の重ね合わせに原子を用いて行うことができる。
量子制限型マイクロ波増幅器は、極大信号対雑音比と最小観測時間で正確なサイクロトロン周波数の測定を可能にする。
これらの重要な領域で量子技術がもたらす機会を爆発させることは、ニュートリノ質量のための量子技術(Quantum Technologies for Neutrino Mass, QTNM)プロジェクトの中核的な活動を表している。
その目標は、絶対ニュートリノ質量を10〜meV/$c^2$の感度で決定できる新しい実験装置を開発することである。
関連論文リスト
- Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
量子スピンチェーンの電気的制御は、量子情報処理に関連する技術での可能性から、ここ数年で際立った目標となった。
走査トンネル顕微鏡(STM)による電場を利用したS=1/2$チタン原子鎖における制御量子状態伝達の実現可能性を示す。
論文 参考訳(メタデータ) (2024-08-13T14:45:46Z) - Quantum Noise Limited Phased Arrays for Single-Electron Cyclotron
Radiation Emission Spectroscopy [4.687131504928305]
有望なアプローチは、トリチウムの放射性崩壊時に放出される電子のエネルギーを測定することである。
興味のエネルギーは18.6keVの終点の数 eV 内にあり、弱相対論的である。
単一電子CRESのための内向き量子ノイズ制限マイクロ波受信機の設計と最適化に関する諸問題について考察する。
論文 参考訳(メタデータ) (2024-01-06T16:05:04Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
理論的には、2つの電子間の非スクリーンのクーロン相互作用による感情の絡み合いの発生を理論的に検討する。
我々は、ハミルトニアン模型を単一粒子のハートリー積基底に対して対角化することにより、電子の運動エネルギースペクトルとその絡み合いを計算する。
特に、ここで開発された理論ツールは、超流動ヘリウムや固体ネオンの表面上に閉じ込められた電子による将来の実験において制御パラメータの微調整と最適化に利用できる。
論文 参考訳(メタデータ) (2023-10-07T21:40:20Z) - Precision Spectroscopy of Fast, Hot Exotic Isotopes Using Machine
Learning Assisted Event-by-Event Doppler Correction [0.6999740786886537]
高速エキゾチック同位体の高感度・高精度レーザー分光法を実験的に提案する。
高度エネルギーのビームで直接飛行中の分光を行う能力は、ミリ秒の範囲で寿命の短い同位体を研究する特別な機会を与える。
論文 参考訳(メタデータ) (2023-04-25T19:53:59Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
マイクロ波または高周波駆動は、量子センサーの小型化、エネルギー効率、非侵襲性を著しく制限する。
我々は、コヒーレント量子センシングに対する純粋に光学的アプローチを示すことによって、この制限を克服する。
この結果から, 磁気学やジャイロスコープの応用において, 量子センサの小型化が期待できる。
論文 参考訳(メタデータ) (2022-12-14T08:34:11Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
このような共振器は高空間分解能で電子と核スピンの検出を可能にする。
この記事は、このビジョンが現実になる前に克服しなければならない課題をリストアップし、潜在的な解決策を示している。
論文 参考訳(メタデータ) (2022-09-12T12:21:00Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
高周波反射計は、その持続時間が極端に短い場合や、マイクロ秒以下の場合であってもインピーダンスの変化を測定することができる。
反射率実験の例としては、量子コンピューティングのための量子ビットとマヨラナデバイスの射影測定がある。
本書は,本手法を読者に紹介し,現在までの進歩をレビューし,高速量子デバイス力学の新しい実験を動機付けることを目的としている。
論文 参考訳(メタデータ) (2022-02-21T20:14:21Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
超伝導量子回路は、主要な量子コンピューティングプラットフォームの一つである。
超伝導量子コンピューティングを実用上重要な点に進めるためには、デコヒーレンスに繋がる物質不完全性を特定し、対処することが重要である。
ここでは、テラヘルツ走査近接場光学顕微鏡を用いて、シリコン上の湿式エッチングアルミニウム共振器の局所誘電特性とキャリア濃度を調査する。
論文 参考訳(メタデータ) (2021-06-24T11:06:34Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
クロック遷移は磁気ノイズから分子スピン量子ビットを保護する。
核自由度への線形結合は、電子コヒーレンスの変調と崩壊を引き起こす。
核浴への量子情報漏洩がないことは、他のデコヒーレンス源を特徴づける機会を与える。
論文 参考訳(メタデータ) (2021-06-09T16:23:47Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
本稿では,[VO(TPP)](バナジルテトラフェニルポルフィリン酸塩)が量子計算アルゴリズムの実装に適していることを示す。
超微細相互作用によって結合された電子スピン1/2を核スピン7/2に埋め込み、どちらも顕著なコヒーレンスによって特徴づけられる。
論文 参考訳(メタデータ) (2021-03-15T21:38:41Z) - Towards atomic-resolution quantum measurements with coherently-shaped
free electrons [0.0]
本稿では、レーザーパルスによってコヒーレントに形状された自由電子を利用して、材料中の量子コヒーレンスを測定する手法を提案する。
レーザー形電子のエネルギースペクトルによって、量子ビットのブロック球状態とデコヒーレンス時間を測定することができることを示す。
提案手法は超高速透過電子顕微鏡(UTEM)で実装でき、量子系の状態の完全な評価に向けた道を開くことができる。
論文 参考訳(メタデータ) (2020-10-31T19:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。