Measurments-induced quantum phase transitions
- URL: http://arxiv.org/abs/2412.06440v1
- Date: Mon, 09 Dec 2024 12:32:56 GMT
- Title: Measurments-induced quantum phase transitions
- Authors: Dragi Karevski, Michele Coppola, Emanuele Tirrito, Mario Collura,
- Abstract summary: Local projective measurements on a one-dimensional quadratic fermionic system induce a change in the time growth of the entanglement entropy.
However, in the stationary regime, the logarithmic behavior of the entanglement entropy does not survive in the thermodynamic limit.
For any finite value of the measurement rate, we numerically show the existence of a single area-law phase for the entanglement entropy.
- Score: 0.0
- License:
- Abstract: Dynamical phase transitions induced by local projective measurements have attracted a lot of attention in the past few years. It has been in particular argued that measurements may induce an abrupt change in the scaling law of the bipartite entanglement entropy. In this work we show that local projective measurements on a one-dimensional quadratic fermionic system induce a qualitative modification of the time growth of the entanglement entropy, changing from linear to logarithmic. However, in the stationary regime, the logarithmic behavior of the entanglement entropy does not survive in the thermodynamic limit and, for any finite value of the measurement rate, we numerically show the existence of a single area-law phase for the entanglement entropy. We give analytical arguments supporting our conclusions.
Related papers
- Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Observational entropic study of Anderson localization [0.0]
We study the behaviour of the observational entropy in the context of localization-delocalization transition for one-dimensional Aubrey-Andr'e model.
For a given coarse-graining, it increases logarithmically with system size in the delocalized phase, and obeys area law in the localized phase.
We also find the increase of the observational entropy followed by the quantum quench, is logarithmic in time in the delocalized phase as well as at the transition point, while in the localized phase it oscillates.
arXiv Detail & Related papers (2022-09-21T11:26:43Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Growth of entanglement entropy under local projective measurements [0.0]
We show that local projective measurements induce a qualitative modification of the time-growth of the entanglement entropy.
In the stationary regime, the logarithmic behavior of the entanglement entropy do not survive in the thermodynamic limit.
We numerically show the existence of a single area-law phase for the entanglement entropy.
arXiv Detail & Related papers (2021-09-22T16:56:35Z) - Measurement-induced dark state phase transitions in long-ranged fermion
systems [3.093890460224435]
We identify an unconventional scaling phase in the quantum dynamics of free fermions with long range hopping.
A perturbative renormalization group analysis suggests that the transitions to the long-range phase are also unconventional, corresponding to a modified sine-Gordon theory.
This confirms the view of a measurement-induced phase transition as a quantum phase transition in the dark state of an effective, non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2021-05-17T18:00:03Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Area-Law Study of Quantum Spin System on Hyperbolic Lattice Geometries [0.0]
Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied.
We identify the quantum phase transition for each hyperbolic lattice by calculating the magnetization.
We study the entanglement entropy at the phase transition in order to analyze the correlations of various subsystems.
arXiv Detail & Related papers (2020-03-24T08:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.