Growth of entanglement entropy under local projective measurements
- URL: http://arxiv.org/abs/2109.10837v2
- Date: Mon, 21 Mar 2022 18:18:56 GMT
- Title: Growth of entanglement entropy under local projective measurements
- Authors: Michele Coppola, Emanuele Tirrito, Dragi Karevski, Mario Collura
- Abstract summary: We show that local projective measurements induce a qualitative modification of the time-growth of the entanglement entropy.
In the stationary regime, the logarithmic behavior of the entanglement entropy do not survive in the thermodynamic limit.
We numerically show the existence of a single area-law phase for the entanglement entropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-equilibrium dynamics of many-body quantum systems under the effect of
measurement protocols is attracting an increasing amount of attention. It has
been recently revealed that measurements may induce an abrupt change in the
scaling-law of the bipartite entanglement entropy, thus suggesting the
existence of different non-equilibrium regimes. However, our understanding of
how these regimes appear and whether they survive in the thermodynamic limit is
much less established. Here we investigate these questions on a one-dimensional
quadratic fermionic model: this allows us to reach system sizes relevant in the
thermodynamic sense. We show that local projective measurements induce a
qualitative modification of the time-growth of the entanglement entropy which
changes from linear to logarithmic. However, in the stationary regime, the
logarithmic behavior of the entanglement entropy do not survive in the
thermodynamic limit and, for any finite value of the measurement rate, we
numerically show the existence of a single area-law phase for the entanglement
entropy. Finally, exploiting the quasi-particle picture, we further support our
results analysing the fluctuations of the stationary entanglement entropy and
its scaling behavior.
Related papers
- Quantum relative entropy uncertainty relation [0.0]
For classic systems, the fluctuations of a current have a lower bound in terms of the entropy production.
We generalize this idea for quantum systems, where we find a lower bound for the uncertainty of quantum observables given in terms of the quantum relative entropy.
We apply the result to obtain a quantum thermodynamic uncertainty relation in terms of the quantum entropy production, valid for arbitrary dynamics and non-thermal environments.
arXiv Detail & Related papers (2023-09-15T18:58:51Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Quantum Fluctuation Theorem for Arbitrary Measurement and Feedback Schemes [0.0]
We derive a novel fluctuation theorem and the associated second law of information thermodynamics.
In our second law, the entropy production is bounded by the coarse-grained entropy production which is inferrable from the measurement outcomes.
We illustrate our results by a qubit undergoing discrete and continuous measurement, where our approach provides a useful bound on the entropy production for all measurement strengths.
arXiv Detail & Related papers (2023-06-21T14:09:30Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - W entropy in hard-core system [5.156535834970047]
In quantum mechanics the evolution of quantum states is symmetrical about time-reversal, resulting in a contradiction between thermodynamic entropy and quantum entropy.
We study the W entropy, which is calculated from the probability distribution of the wave function on Wannier basis, in hard-core boson system.
arXiv Detail & Related papers (2022-10-01T03:24:10Z) - Observational entropic study of Anderson localization [0.0]
We study the behaviour of the observational entropy in the context of localization-delocalization transition for one-dimensional Aubrey-Andr'e model.
For a given coarse-graining, it increases logarithmically with system size in the delocalized phase, and obeys area law in the localized phase.
We also find the increase of the observational entropy followed by the quantum quench, is logarithmic in time in the delocalized phase as well as at the transition point, while in the localized phase it oscillates.
arXiv Detail & Related papers (2022-09-21T11:26:43Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Wehrl entropy production rate across a dynamical quantum phase
transition [0.0]
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo.
We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations.
The small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo.
arXiv Detail & Related papers (2020-04-02T16:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.