論文の概要: UAV Virtual Antenna Array Deployment for Uplink Interference Mitigation in Data Collection Networks
- arxiv url: http://arxiv.org/abs/2412.06456v1
- Date: Mon, 09 Dec 2024 12:56:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:06.128814
- Title: UAV Virtual Antenna Array Deployment for Uplink Interference Mitigation in Data Collection Networks
- Title(参考訳): データ収集ネットワークにおけるアップリンク干渉緩和のためのUAV仮想アンテナアレイ配置
- Authors: Hongjuan Li, Hui Kang, Geng Sun, Jiahui Li, Jiacheng Wang, Xue Wang, Dusit Niyato, Victor C. M. Leung,
- Abstract要約: 無人航空機(UAV)は、航空無線ネットワークと通信を確立するためのプラットフォームとして注目されている。
本稿では,複数UAVネットワークシステムにおける協調ビームフォーミング(CB)法に基づく新しいアップリンク干渉緩和手法を提案する。
- 参考スコア(独自算出の注目度): 71.23793087286703
- License:
- Abstract: Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications. However, the line-of-sight dominance in air-to-ground communications often leads to significant interference with terrestrial networks, reducing communication efficiency among terrestrial terminals. This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems. Specifically, the UAV swarm forms a UAV-enabled virtual antenna array (VAA) to achieve the transmissions of gathered data to multiple base stations (BSs) for data backup and distributed processing. However, there is a trade-off between the effectiveness of CB-based interference mitigation and the energy conservation of UAVs. Thus, by jointly optimizing the excitation current weights and hover position of UAVs as well as the sequence of data transmission to various BSs, we formulate an uplink interference mitigation multi-objective optimization problem (MOOP) to decrease interference affection, enhance transmission efficiency, and improve energy efficiency, simultaneously. In response to the computational demands of the formulated problem, we introduce an evolutionary computation method, namely chaotic non-dominated sorting genetic algorithm II (CNSGA-II) with multiple improved operators. The proposed CNSGA-II efficiently addresses the formulated MOOP, outperforming several other comparative algorithms, as evidenced by the outcomes of the simulations. Moreover, the proposed CB-based uplink interference mitigation approach can significantly reduce the interference caused by UAVs to non-receiving BSs.
- Abstract(参考訳): 無人航空機(UAV)は、航空無線ネットワークと通信を確立するためのプラットフォームとして注目されている。
しかし、地上間通信における視線優位は、しばしば地上ネットワークとの重大な干渉を引き起こし、地上端末間の通信効率を低下させる。
本稿では,複数UAVネットワークシステムにおける協調ビームフォーミング(CB)法に基づく新しいアップリンク干渉緩和手法を提案する。
具体的には、UAVSwarmはUAV対応仮想アンテナアレイ(VAA)を形成し、データバックアップと分散処理のために収集されたデータの複数の基地局(BS)への送信を実現する。
しかし、CBベースの干渉緩和効果とUAVのエネルギー保存との間にはトレードオフがある。
したがって、UAVの励起電流重みとホバリング位置と各種BSへのデータ送信の順序を共同で最適化することにより、アップリンク干渉緩和多目的最適化問題(MOOP)を定式化し、干渉の影響を低減し、伝送効率を向上し、同時にエネルギー効率を向上させる。
定式化問題の計算要求に応じて、複数の改良された演算子を持つカオスな非支配的ソート遺伝的アルゴリズムII(CNSGA-II)を導入する。
提案した CNSGA-II は、シミュレーションの結果から証明されるように、MOOP の定式化に効率よく対応し、他の比較アルゴリズムよりも優れている。
さらに,提案手法により,UAVによる非受信BSへの干渉を著しく低減することができる。
関連論文リスト
- Covert Multicast in UAV-Enabled Wireless Communication Systems With One-hop and Two-hop Strategies [8.702721247072429]
無人航空機(UAV)による無線通信システムにおける隠蔽マルチキャストの時間について検討する。
本稿では,1つの(OH)パーティクルスワム(PSO)に基づくアルゴリズムと,送信方式とTH方式の性能モデリングのための網羅的なフレームワークを提案する。
提案したPSOアルゴリズムの効率は、広範囲な数値的な結果によって検証される。
論文 参考訳(メタデータ) (2024-10-16T06:46:30Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
航空中継機としての無人航空機(UAV)は、インターネットモノ(IoT)ネットワークの補助として事実上魅力的である。
本研究では,UAV基地局と端末端末装置間のセキュアな通信を支援するために,UAVを活用することを目的とする。
論文 参考訳(メタデータ) (2023-10-03T11:47:01Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Deep Reinforcement Learning for Interference Management in UAV-based 3D
Networks: Potentials and Challenges [137.47736805685457]
チャネル情報を知らなくても干渉を効果的に軽減できることを示す。
干渉を利用することにより、提案された解決策は民間UAVの継続的な成長を可能にする。
論文 参考訳(メタデータ) (2023-05-11T18:06:46Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本稿では,衝突回避と無線接続制約による複数UAV軌道最適化問題を再構成する。
この問題を解決するために,分散型深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-03T22:22:20Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。