論文の概要: AoI-Sensitive Data Forwarding with Distributed Beamforming in UAV-Assisted IoT
- arxiv url: http://arxiv.org/abs/2502.09038v1
- Date: Thu, 13 Feb 2025 07:48:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:48:42.498777
- Title: AoI-Sensitive Data Forwarding with Distributed Beamforming in UAV-Assisted IoT
- Title(参考訳): UAV支援IoTにおける分散ビームフォーミングを用いたAoI-Sensitive Data Forwarding
- Authors: Zifan Lang, Guixia Liu, Geng Sun, Jiahui Li, Zemin Sun, Jiacheng Wang, Victor C. M. Leung,
- Abstract要約: 本稿では,IoT(Internet of Things, モノのインターネット)における年齢フォワード情報(AoI)の分散ビームフォーミングに基づくUAV支援システムを提案する。
そこで我々は,この問題を解決するため,DRLに基づくアルゴリズムを提案し,安定性を向上し,収束を加速する。
- 参考スコア(独自算出の注目度): 32.6091251316091
- License:
- Abstract: This paper proposes a UAV-assisted forwarding system based on distributed beamforming to enhance age of information (AoI) in Internet of Things (IoT). Specifically, UAVs collect and relay data between sensor nodes (SNs) and the remote base station (BS). However, flight delays increase the AoI and degrade the network performance. To mitigate this, we adopt distributed beamforming to extend the communication range, reduce the flight frequency and ensure the continuous data relay and efficient energy utilization. Then, we formulate an optimization problem to minimize AoI and UAV energy consumption, by jointly optimizing the UAV trajectories and communication schedules. The problem is non-convex and with high dynamic, and thus we propose a deep reinforcement learning (DRL)-based algorithm to solve the problem, thereby enhancing the stability and accelerate convergence speed. Simulation results show that the proposed algorithm effectively addresses the problem and outperforms other benchmark algorithms.
- Abstract(参考訳): 本稿では,IoT(Internet of Things, モノのインターネット)における情報化(AoI)を向上させるために, 分散ビームフォーミングに基づくUAV支援フォワードシステムを提案する。
具体的には、UAVはセンサーノード(SN)とリモートベースステーション(BS)の間でデータを収集、中継する。
しかし、飛行遅延はAoIを増大させ、ネットワーク性能を低下させる。
これを軽減するために、分散ビームフォーミングを採用し、通信範囲を拡張し、飛行周波数を低減し、連続データ中継と効率的なエネルギー利用を確保する。
そして、UAV軌道と通信スケジュールを協調的に最適化することにより、AoIとUAVのエネルギー消費を最小限に抑える最適化問題を定式化する。
この問題は非凸かつ高ダイナミックであり、この問題を解くための深部強化学習(DRL)に基づくアルゴリズムを提案し、安定性を高め、収束速度を高速化する。
シミュレーションの結果,提案アルゴリズムはこの問題に効果的に対処し,他のベンチマークアルゴリズムよりも優れていることがわかった。
関連論文リスト
- Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided IoT
Networks by Transformer [8.203870302926614]
IoT(Internet-of-Things)ネットワークにおけるデータ収集の鮮度維持が注目されている。
クラスター型IoTネットワークを支援する無人航空機(UAV)の軌道計画問題について検討する。
地上IoTネットワークからのUAVによる収集データの総AoIを最小化するために最適化問題を定式化する。
論文 参考訳(メタデータ) (2023-11-08T17:13:19Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
航空中継機としての無人航空機(UAV)は、インターネットモノ(IoT)ネットワークの補助として事実上魅力的である。
本研究では,UAV基地局と端末端末装置間のセキュアな通信を支援するために,UAVを活用することを目的とする。
論文 参考訳(メタデータ) (2023-10-03T11:47:01Z) - Federated Learning in UAV-Enhanced Networks: Joint Coverage and
Convergence Time Optimization [16.265792031520945]
フェデレートラーニング(FL)には、ローカルデータを転送することなく、共有モデルを協調的にトレーニングする複数のデバイスが含まれる。
FLは通信のオーバーヘッドを減らし、エネルギー資源の少ないUAV強化無線ネットワークにおいて有望な学習方法となる。
この可能性にもかかわらず、UAVに強化されたネットワークにFLを実装することは困難であり、カバー範囲を最大化する従来のUAV配置手法はFL遅延を増大させる。
論文 参考訳(メタデータ) (2023-08-31T17:50:54Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
高高度プラットフォーム(HAP)と無人航空機(UAV)からなる階層型空中コンピューティングフレームワークを開発する。
タスクスケジューリングは平均AoIを大幅に削減する。
電力割り当ては全ユーザに対して全送信電力を使用する場合と比較して平均AoIに限界効果があることが示されている。
論文 参考訳(メタデータ) (2023-05-01T11:52:15Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
無人航空機(UAV)通信をサポートするIoTデバイスのための同時無線電力伝送と情報伝送方式を提案する。
第1フェーズでは、IoTデバイスが無線電力転送を通じてUAVからエネルギーを回収し、第2フェーズでは、UAVが情報伝送を通じてIoTデバイスからデータを収集する。
マルコフ決定過程を定式化し、ネットワーク総和率を最大化する最適化問題を解くために、2つの深い強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-05T23:55:44Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。