Prediction of Occluded Pedestrians in Road Scenes using Human-like Reasoning: Insights from the OccluRoads Dataset
- URL: http://arxiv.org/abs/2412.06549v1
- Date: Mon, 09 Dec 2024 14:59:27 GMT
- Title: Prediction of Occluded Pedestrians in Road Scenes using Human-like Reasoning: Insights from the OccluRoads Dataset
- Authors: Melo Castillo Angie Nataly, Martin Serrano Sergio, Salinas Carlota, Sotelo Miguel Angel,
- Abstract summary: We present the Occlusion-Rich Road Scenes with Pedestrians dataset, which features a diverse collection of road scenes with partially and fully occluded pedestrians.
Using this dataset, we developed a pipeline to predict the presence of occluded pedestrians, leveraging Knowledge Graph (KG), Knowledge Graph Embedding (KGE), and a Bayesian inference process.
Our approach achieves a F1 score of 0.91, representing an improvement of up to 42% compared to traditional machine learning models.
- Score: 0.0
- License:
- Abstract: Pedestrian detection is a critical task in autonomous driving, aimed at enhancing safety and reducing risks on the road. Over recent years, significant advancements have been made in improving detection performance. However, these achievements still fall short of human perception, particularly in cases involving occluded pedestrians, especially entirely invisible ones. In this work, we present the Occlusion-Rich Road Scenes with Pedestrians (OccluRoads) dataset, which features a diverse collection of road scenes with partially and fully occluded pedestrians in both real and virtual environments. All scenes are meticulously labeled and enriched with contextual information that encapsulates human perception in such scenarios. Using this dataset, we developed a pipeline to predict the presence of occluded pedestrians, leveraging Knowledge Graph (KG), Knowledge Graph Embedding (KGE), and a Bayesian inference process. Our approach achieves a F1 score of 0.91, representing an improvement of up to 42% compared to traditional machine learning models.
Related papers
- DAVE: Diverse Atomic Visual Elements Dataset with High Representation of Vulnerable Road Users in Complex and Unpredictable Environments [60.69159598130235]
We present a new dataset, DAVE, designed for evaluating perception methods with high representation of Vulnerable Road Users (VRUs)
DAVE is a manually annotated dataset encompassing 16 diverse actor categories (spanning animals, humans, vehicles, etc.) and 16 action types (complex and rare cases like cut-ins, zigzag movement, U-turn, etc.)
Our experiments show that existing methods suffer degradation in performance when evaluated on DAVE, highlighting its benefit for future video recognition research.
arXiv Detail & Related papers (2024-12-28T06:13:44Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.
Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.
This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models [8.253092044813595]
We propose an explainable road users' behavior prediction system that integrates the reasoning abilities of Knowledge Graphs and Large Language Models.
Two use cases have been implemented following the proposed approach: 1) Prediction of pedestrians' crossing actions; 2) Prediction of lane change maneuvers.
arXiv Detail & Related papers (2024-05-01T11:06:31Z) - Adaptive Human Trajectory Prediction via Latent Corridors [49.13061580045407]
We formalize the problem of scene-specific adaptive trajectory prediction.
We propose a new adaptation approach inspired by prompt tuning called latent corridors.
With less than 0.1% additional model parameters, we see up to 23.9% ADE improvement in MOT Synth simulated data and 16.4% ADE in MOT and Wildtrack real pedestrian data.
arXiv Detail & Related papers (2023-12-11T18:59:12Z) - Local and Global Contextual Features Fusion for Pedestrian Intention
Prediction [2.203209457340481]
We analyse and analyse visual features of both pedestrian and traffic contexts.
To understand the global context, we utilise location, motion, and environmental information.
These multi-modality features are intelligently fused for effective intention learning.
arXiv Detail & Related papers (2023-05-01T22:37:31Z) - Dynamic loss balancing and sequential enhancement for road-safety
assessment and traffic scene classification [0.0]
Road-safety inspection is an indispensable instrument for reducing road-accident fatalities contributed to road infrastructure.
Recent work formalizes road-safety assessment in terms of carefully selected risk factors that are also known as road-safety attributes.
We propose to reduce dependency on tedious human labor by automating recognition with a two-stage neural architecture.
arXiv Detail & Related papers (2022-11-08T11:10:07Z) - Vision based Pedestrian Potential Risk Analysis based on Automated
Behavior Feature Extraction for Smart and Safe City [5.759189800028578]
We propose a comprehensive analytical model for pedestrian potential risk using video footage gathered by road security cameras deployed at such crossings.
The proposed system automatically detects vehicles and pedestrians, calculates trajectories by frames, and extracts behavioral features affecting the likelihood of potentially dangerous scenes between these objects.
We validated feasibility and applicability by applying it in multiple crosswalks in Osan city, Korea.
arXiv Detail & Related papers (2021-05-06T11:03:10Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
We present an unsupervised adaptation approach for visual scene understanding in unstructured traffic environments.
Our method is designed for unstructured real-world scenarios with dense and heterogeneous traffic consisting of cars, trucks, two-and three-wheelers, and pedestrians.
arXiv Detail & Related papers (2020-09-22T08:25:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.