Dynamic loss balancing and sequential enhancement for road-safety
assessment and traffic scene classification
- URL: http://arxiv.org/abs/2211.04165v1
- Date: Tue, 8 Nov 2022 11:10:07 GMT
- Title: Dynamic loss balancing and sequential enhancement for road-safety
assessment and traffic scene classification
- Authors: Marin Ka\v{c}an, Marko \v{S}evrovi\'c, Sini\v{s}a \v{S}egvi\'c
- Abstract summary: Road-safety inspection is an indispensable instrument for reducing road-accident fatalities contributed to road infrastructure.
Recent work formalizes road-safety assessment in terms of carefully selected risk factors that are also known as road-safety attributes.
We propose to reduce dependency on tedious human labor by automating recognition with a two-stage neural architecture.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road-safety inspection is an indispensable instrument for reducing
road-accident fatalities contributed to road infrastructure. Recent work
formalizes road-safety assessment in terms of carefully selected risk factors
that are also known as road-safety attributes. In current practice, these
attributes are manually annotated in geo-referenced monocular video for each
road segment. We propose to reduce dependency on tedious human labor by
automating recognition with a two-stage neural architecture. The first stage
predicts more than forty road-safety attributes by observing a local
spatio-temporal context. Our design leverages an efficient convolutional
pipeline, which benefits from pre-training on semantic segmentation of street
scenes. The second stage enhances predictions through sequential integration
across a larger temporal window. Our design leverages per-attribute instances
of a lightweight bidirectional LSTM architecture. Both stages alleviate extreme
class imbalance by incorporating a multi-task variant of recall-based dynamic
loss weighting. We perform experiments on the iRAP-BH dataset, which involves
fully labeled geo-referenced video along 2,300 km of public roads in Bosnia and
Herzegovina. We also validate our approach by comparing it with the related
work on two road-scene classification datasets from the literature: Honda
Scenes and FM3m. Experimental evaluation confirms the value of our
contributions on all three datasets.
Related papers
- RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - Trajectory Prediction with Observations of Variable-Length for Motion
Planning in Highway Merging scenarios [5.193470362635256]
Existing methods cannot initiate prediction for a vehicle unless observed for a fixed duration of two or more seconds.
This paper proposes a novel transformer-based trajectory prediction approach, specifically trained to handle any observation length larger than one frame.
We perform a comprehensive evaluation of the proposed method using two large-scale highway trajectory datasets.
arXiv Detail & Related papers (2023-06-08T18:03:48Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Augmenting Ego-Vehicle for Traffic Near-Miss and Accident Classification
Dataset using Manipulating Conditional Style Translation [0.3441021278275805]
There is no difference between accident and near-miss at the time before the accident happened.
Our contribution is to redefine the accident definition and re-annotate the accident inconsistency on DADA-2000 dataset together with near-miss.
The proposed method integrates two different components: conditional style translation (CST) and separable 3-dimensional convolutional neural network (S3D)
arXiv Detail & Related papers (2023-01-06T22:04:47Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Spatio-Temporal Graph Convolutional Networks for Road Network Inundation
Status Prediction during Urban Flooding [1.376408511310322]
The objective of this study is to predict the near-future flooding status of road segments based on their own and adjacent road segments current status.
Existing studies related to near-future prediction of road network flooding status at road segment level are missing.
arXiv Detail & Related papers (2021-04-06T04:03:34Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios.
The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps.
The second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences.
The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network
arXiv Detail & Related papers (2020-04-29T14:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.