論文の概要: Applications and Implications of Large Language Models in Qualitative Analysis: A New Frontier for Empirical Software Engineering
- arxiv url: http://arxiv.org/abs/2412.06564v1
- Date: Mon, 09 Dec 2024 15:17:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:57:03.952203
- Title: Applications and Implications of Large Language Models in Qualitative Analysis: A New Frontier for Empirical Software Engineering
- Title(参考訳): 質的分析における大規模言語モデルの応用と意味:経験的ソフトウェア工学の新しいフロンティア
- Authors: Matheus de Morais Leça, Lucas Valença, Reydne Santos, Ronnie de Souza Santos,
- Abstract要約: この研究は、ソフトウェア工学における質的研究におけるLCMの使用を最適化するための構造化戦略とガイドラインの必要性を強調している。
LLMは質的な分析をサポートすることを約束していますが、データの解釈には人間の専門知識が不可欠です。
- 参考スコア(独自算出の注目度): 0.46426852157920906
- License:
- Abstract: The use of large language models (LLMs) for qualitative analysis is gaining attention in various fields, including software engineering, where qualitative methods are essential for understanding human and social factors. This study aimed to investigate how LLMs are currently used in qualitative analysis and their potential applications in software engineering research, focusing on the benefits, limitations, and practices associated with their use. A systematic mapping study was conducted, analyzing 21 relevant studies to explore reported uses of LLMs for qualitative analysis. The findings indicate that LLMs are primarily used for tasks such as coding, thematic analysis, and data categorization, offering benefits like increased efficiency and support for new researchers. However, limitations such as output variability, challenges in capturing nuanced perspectives, and ethical concerns related to privacy and transparency were also identified. The study emphasizes the need for structured strategies and guidelines to optimize LLM use in qualitative research within software engineering, enhancing their effectiveness while addressing ethical considerations. While LLMs show promise in supporting qualitative analysis, human expertise remains crucial for interpreting data, and ongoing exploration of best practices will be vital for their successful integration into empirical software engineering research.
- Abstract(参考訳): 質的分析のための大規模言語モデル(LLM)の利用は、人や社会的要因を理解するために質的手法が不可欠であるソフトウェア工学など、様々な分野で注目を集めている。
本研究では,LLMの質的分析とソフトウェア工学研究への応用の可能性について検討し,その利用に関するメリット,限界,プラクティスに注目した。
系統地図調査を行い、21の関連研究を分析し、質的分析のためのLCMの報告された使用法を調査した。
この結果は、LLMが主にコーディング、テーマ分析、データ分類などのタスクに使われ、効率の向上や新しい研究者のサポートといったメリットを提供していることを示唆している。
しかし、出力の多様性、ニュアンスな視点を捉える際の課題、プライバシーと透明性に関する倫理的懸念といった制限も特定された。
この研究は、ソフトウェア工学における質的研究におけるLCMの使用を最適化するための構造化戦略とガイドラインの必要性を強調し、倫理的考察に対処しながらその効果を高める。
LLMは質的な分析をサポートすることを約束していますが、データの解釈には人間の専門知識が不可欠です。
関連論文リスト
- Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
先進的な生成AIを駆使した大規模言語モデル(LLM)がトランスフォーメーションツールとして登場した。
本研究は, LLMを用いた定性的研究に関する文献を体系的にマッピングする。
LLMは様々な分野にまたがって利用されており、プロセスの自動化の可能性を示している。
論文 参考訳(メタデータ) (2024-11-18T21:28:00Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Reconciling Methodological Paradigms: Employing Large Language Models as Novice Qualitative Research Assistants in Talent Management Research [1.0949553365997655]
本研究では,RAGに基づくLarge Language Models (LLMs) を用いた面接文の解析手法を提案する。
この研究の斬新さは、初歩的な研究助手として機能するLSMによって強化された研究調査をストラテジー化することにある。
以上の結果から, LLM拡張RAGアプローチは, 手動で生成したトピックと比較して, 興味のあるトピックを抽出できることが示唆された。
論文 参考訳(メタデータ) (2024-08-20T17:49:51Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - Apprentices to Research Assistants: Advancing Research with Large Language Models [0.0]
大規模言語モデル(LLM)は、様々な研究領域において強力なツールとして登場した。
本稿では,文献レビューと手動実験を通じてその可能性について考察する。
論文 参考訳(メタデータ) (2024-04-09T15:53:06Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Can Large Language Models Serve as Data Analysts? A Multi-Agent Assisted
Approach for Qualitative Data Analysis [6.592797748561459]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)における協調的な人間とロボットの相互作用を可能にした
定性的な研究において,新たな拡張性と精度の次元を導入し,SEにおけるデータ解釈手法を変革する可能性がある。
論文 参考訳(メタデータ) (2024-02-02T13:10:46Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
本稿では,ソフトウェア工学の文脈におけるテストケース構築における大規模言語モデルの適用について検討する。
定性分析と定量分析の混合により, LLMが試験ケースの包括性, 精度, 効率に与える影響を評価する。
論文 参考訳(メタデータ) (2023-12-19T20:59:02Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
情報抽出は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,emphLLMおよびemphLLMに基づく低リソースIEに対するニューラルアプローチについて概説する。
論文 参考訳(メタデータ) (2022-02-16T13:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。