論文の概要: Data Quality Enhancement on the Basis of Diversity with Large Language Models for Text Classification: Uncovered, Difficult, and Noisy
- arxiv url: http://arxiv.org/abs/2412.06575v1
- Date: Mon, 09 Dec 2024 15:28:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:44.774005
- Title: Data Quality Enhancement on the Basis of Diversity with Large Language Models for Text Classification: Uncovered, Difficult, and Noisy
- Title(参考訳): テキスト分類のための大規模言語モデルを用いた多様性に基づくデータ品質向上:発見・難易度・ノイズ
- Authors: Min Zeng, Caiquan Liu, Shiqi Zhang, Li Xie, Chen Sang, Xiaoxin Chen, Xiaoxin Chen,
- Abstract要約: 本稿では,大規模言語モデル(LLM)に基づくテキスト分類のためのデータ品質向上手法を提案する。
実験の結果,本手法はテキスト分類作業におけるLLMの性能を効果的に向上することが示された。
提案手法は,いくつかのオープンソース分類タスクにおいて最先端の性能を達成した。
- 参考スコア(独自算出の注目度): 5.648599856675112
- License:
- Abstract: In recent years, the use of large language models (LLMs) for text classification has attracted widespread attention. Despite this, the classification accuracy of LLMs has not yet universally surpassed that of smaller models. LLMs can enhance their performance in text classification through fine-tuning. However, existing data quality research based on LLMs is challenging to apply directly to solve text classification problems. To further improve the performance of LLMs in classification tasks, this paper proposes a data quality enhancement (DQE) method for text classification based on LLMs. This method starts by using a greedy algorithm to select data, dividing the dataset into sampled and unsampled subsets, and then performing fine-tuning of the LLMs using the sampled data. Subsequently, this model is used to predict the outcomes for the unsampled data, categorizing incorrectly predicted data into uncovered, difficult, and noisy data. Experimental results demonstrate that our method effectively enhances the performance of LLMs in text classification tasks and significantly improves training efficiency, saving nearly half of the training time. Our method has achieved state-of-the-art performance in several open-source classification tasks.
- Abstract(参考訳): 近年,テキスト分類における大規模言語モデル (LLM) の利用が注目されている。
しかし、LSMの分類精度は、まだより小さなモデルの分類精度を超えていない。
LLMは微調整によってテキスト分類の性能を向上させることができる。
しかし, LLMに基づく既存のデータ品質研究は, テキスト分類問題を直接適用することは困難である。
分類タスクにおけるLLMの性能をさらに向上するために,LLMに基づくテキスト分類のためのデータ品質向上(DQE)手法を提案する。
この方法は、データを選択し、データセットをサンプリングされたサブセットとアンサンプリングされたサブセットに分割し、次にサンプルデータを使用してLLMの微調整を実行するために、greedyアルゴリズムを使用することから始まる。
その後、このモデルを用いてアンサンプされたデータの結果を予測し、誤って予測されたデータを未発見で困難でノイズの多いデータに分類する。
実験の結果,本手法はテキスト分類作業におけるLLMの性能を効果的に向上し,トレーニング効率を大幅に向上し,トレーニング時間のほぼ半分を節約できることがわかった。
提案手法は,いくつかのオープンソース分類タスクにおいて最先端の性能を達成した。
関連論文リスト
- The Promises and Pitfalls of LLM Annotations in Dataset Labeling: a Case Study on Media Bias Detection [23.378592856800168]
大きな言語モデル(LLM)は、アノテーションプロセスの自動化に使用することができる。
本研究では,メディアバイアス検出の複雑なタスクにLDMが適用可能であるかを検討する。
メディアバイアス分類のための,最初の大規模データセットであるAnnolexicalを作成します。
論文 参考訳(メタデータ) (2024-11-17T14:14:36Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - LLMEmbed: Rethinking Lightweight LLM's Genuine Function in Text Classification [13.319594321038926]
本稿では,この古典的だが挑戦的な課題に対処するために,LLMEmbedという,シンプルで効果的なトランスファー学習戦略を提案する。
その結果,LLMEmbedはトレーニングのオーバーヘッドを低く抑えながら,高い性能を発揮することがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:46:59Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
大規模言語モデル(LLM)は、NLPタスクにおいて顕著な成功を収めた。
我々は、サポートベクトルマシン(SVM)に基づく教師付き古典機械学習モデルと、RoBERTa、BERTweet、SocBERTに基づく3つの教師付き事前訓練言語モデル(PLM)と、6つのテキスト分類タスクで2つのLLMベースの分類器(GPT3.5、GPT4)をベンチマークした。
LLM(GPT-4)を用いた軽量教師付き分類モデルの訓練には,比較的小さな人手によるデータ拡張(GPT-4)が有効であることを示す総合的な実験を行った。
論文 参考訳(メタデータ) (2024-03-27T22:05:10Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Pushing The Limit of LLM Capacity for Text Classification [27.684335455517417]
本稿では,特殊なテキスト分類 LLM を生成するための適応型ブースティングフレームワーク RGPT を提案する。
RGPTは,4つのベンチマークで平均1.36%,8個のSOTA PLMと7個のSOTA LLMより有意に優れていた。
論文 参考訳(メタデータ) (2024-02-12T08:14:03Z) - CLAMP: Contrastive LAnguage Model Prompt-tuning [89.96914454453791]
このように適応すれば,大規模な言語モデルでも優れた画像分類性能が得られることを示す。
我々のアプローチは最先端のmLLMを13%上回り、カスタムテキストモデルによる対照的な学習をわずかに上回ります。
論文 参考訳(メタデータ) (2023-12-04T05:13:59Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。