A No-Reference Medical Image Quality Assessment Method Based on Automated Distortion Recognition Technology: Application to Preprocessing in MRI-guided Radiotherapy
- URL: http://arxiv.org/abs/2412.06599v2
- Date: Tue, 10 Dec 2024 04:23:02 GMT
- Title: A No-Reference Medical Image Quality Assessment Method Based on Automated Distortion Recognition Technology: Application to Preprocessing in MRI-guided Radiotherapy
- Authors: Zilin Wang, Shengqi Chen, Jianrong Dai, Shirui Qin, Ying Cao, Ruiao Zhao, Guohua Wu, Yuan Tang, Jiayun Chen,
- Abstract summary: We analyzed 106,000 MR images from 10 patients with liver metastasis.
Our No-Reference Quality Assessment Model includes:1)image preprocessing to enhance visibility of key diagnostic features.
The tumor tracking algorithm confirmed significant tracking accuracy improvements with preprocessed images.
- Score: 9.332679162161428
- License:
- Abstract: Objective:To develop a no-reference image quality assessment method using automated distortion recognition to boost MRI-guided radiotherapy precision.Methods:We analyzed 106,000 MR images from 10 patients with liver metastasis,captured with the Elekta Unity MR-LINAC.Our No-Reference Quality Assessment Model includes:1)image preprocessing to enhance visibility of key diagnostic features;2)feature extraction and directional analysis using MSCN coefficients across four directions to capture textural attributes and gradients,vital for identifying image features and potential distortions;3)integrative Quality Index(QI)calculation,which integrates features via AGGD parameter estimation and K-means clustering.The QI,based on a weighted MAD computation of directional scores,provides a comprehensive image quality measure,robust against outliers.LOO-CV assessed model generalizability and performance.Tumor tracking algorithm performance was compared with and without preprocessing to verify tracking accuracy enhancements.Results:Preprocessing significantly improved image quality,with the QI showing substantial positive changes and surpassing other metrics.After normalization,the QI's average value was 79.6 times higher than CNR,indicating improved image definition and contrast.It also showed higher sensitivity in detail recognition with average values 6.5 times and 1.7 times higher than Tenengrad gradient and entropy.The tumor tracking algorithm confirmed significant tracking accuracy improvements with preprocessed images,validating preprocessing effectiveness.Conclusions:This study introduces a novel no-reference image quality evaluation method based on automated distortion recognition,offering a new quality control tool for MRIgRT tumor tracking.It enhances clinical application accuracy and facilitates medical image quality assessment standardization, with significant clinical and research value.
Related papers
- Rethinking Medical Anomaly Detection in Brain MRI: An Image Quality Assessment Perspective [14.39502951611029]
We propose a fusion quality loss function that combines Structural Similarity Index Measure loss with l1 loss, offering a more comprehensive evaluation of reconstruction quality.
We also introduce a data pre-processing strategy that enhances the average intensity ratio (AIR) between normal and abnormal regions, further improving the distinction of anomalies.
The proposed IQA approach achieves significant improvements (>10%) in terms of Dice coefficient (DICE) and Area Under the Precision-Recall Curve (AUPRC) on the BraTS21 (T2, FLAIR) and MSULB datasets.
arXiv Detail & Related papers (2024-08-15T15:55:07Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions.
High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities.
This paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method.
arXiv Detail & Related papers (2024-05-22T06:10:54Z) - Step-Calibrated Diffusion for Biomedical Optical Image Restoration [47.191704042917394]
Restorative Step-Calibrated Diffusion (RSCD) is an unpaired diffusion-based image restoration method.
RSCD outperforms other widely used unpaired image restoration methods on both image quality and perceptual evaluation.
RSCD improves performance on downstream clinical imaging tasks, including automated brain tumor diagnosis and deep tissue imaging.
arXiv Detail & Related papers (2024-03-20T15:38:53Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
No-reference image quality assessment (NR-IQA) models can effectively quantify perceived image quality.
We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
Image quality assessment (IQA) plays a critical role in optimizing radiation dose and developing novel medical imaging techniques.
Recent deep learning-based approaches have demonstrated strong modeling capabilities and potential for medical IQA.
We propose a multi-scale distributions regression approach to predict quality scores by constraining the output distribution.
arXiv Detail & Related papers (2023-11-14T09:33:33Z) - Blind CT Image Quality Assessment Using DDPM-derived Content and
Transformer-based Evaluator [9.626301541775998]
Blind image quality assessment (BIQA) strives to evaluate perceptual quality in alignment with what radiologists perceive.
In this study, we introduce an innovative BIQA metric that emulates the active inference process of IGM.
We won the second place in the MICCAI 2023 low-dose computed tomography perceptual image quality assessment grand challenge.
arXiv Detail & Related papers (2023-10-04T19:13:16Z) - Explainable Image Quality Assessment for Medical Imaging [0.0]
Poor-quality medical images may lead to misdiagnosis.
We propose an explainable image quality assessment system and validate our idea on two different objectives.
We apply a variety of techniques to measure the faithfulness of the saliency detectors.
We show that NormGrad has significant gains over other saliency detectors by reaching a repeated Pointing Game score of 0.853 for Object-CXR and 0.611 for LVOT datasets.
arXiv Detail & Related papers (2023-03-25T14:18:39Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
Image quality assessment (IQA) algorithms aim to reproduce the human's perception of the image quality.
We use outputs of neural network models trained to solve problems relevant to MRI.
Seven trained radiologists assess distorted images, with their verdicts then correlated with 35 different image quality metrics.
arXiv Detail & Related papers (2022-03-15T11:52:29Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.