VOPy: A Framework for Black-box Vector Optimization
- URL: http://arxiv.org/abs/2412.06604v1
- Date: Mon, 09 Dec 2024 15:53:02 GMT
- Title: VOPy: A Framework for Black-box Vector Optimization
- Authors: Yaşar Cahit Yıldırım, Efe Mert Karagözlü, İlter Onat Korkmaz, Çağın Ararat, Cem Tekin,
- Abstract summary: We introduce VOPy, an open-source Python library designed to address black-box vector optimization.
VOPy extends beyond traditional multi-objective optimization tools by enabling flexible, cone-based ordering of solutions.
We detail VOPy's architecture, usage, and potential to advance research and application in the field of vector optimization.
- Score: 6.571063542099525
- License:
- Abstract: We introduce VOPy, an open-source Python library designed to address black-box vector optimization, where multiple objectives must be optimized simultaneously with respect to a partial order induced by a convex cone. VOPy extends beyond traditional multi-objective optimization (MOO) tools by enabling flexible, cone-based ordering of solutions; with an application scope that includes environments with observation noise, discrete or continuous design spaces, limited budgets, and batch observations. VOPy provides a modular architecture, facilitating the integration of existing methods and the development of novel algorithms. We detail VOPy's architecture, usage, and potential to advance research and application in the field of vector optimization. The source code for VOPy is available at https://github.com/Bilkent-CYBORG/VOPy.
Related papers
- A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences [12.248793682283964]
optimizing discrete black-box functions is key in several domains, e.g. protein engineering and drug design.
We develop a unified framework to test a vast array of high-dimensional Bayesian optimization methods and a collection of standardized black-box functions.
These two components of the benchmark are each supported by flexible, scalable, and easily extendable software libraries.
arXiv Detail & Related papers (2024-06-07T08:39:40Z) - Machine Learning Optimized Orthogonal Basis Piecewise Polynomial Approximation [0.9208007322096533]
Piecewise Polynomials (PPs) are utilized in several engineering disciplines, like trajectory planning, to approximate position profiles given in the form of a set of points.
arXiv Detail & Related papers (2024-03-13T14:34:34Z) - MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating
AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts [0.8258451067861933]
(MA-)BBOB is built on the publicly available IOHprofiler platform.
It provides access to the interactive IOHanalyzer module for performance analysis and visualization, and enables comparisons with the rich and growing data collection available for the (MA-)BBOB functions.
arXiv Detail & Related papers (2023-06-18T19:32:12Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - pymoo: Multi-objective Optimization in Python [7.8140593450932965]
We have developed pymoo, a multi-objective optimization framework in Python.
We provide a guide to getting started with our framework by demonstrating the implementation of an exemplary constrained multi-objective optimization scenario.
The implementations in our framework are customizable and algorithms can be modified/extended by supplying custom operators.
arXiv Detail & Related papers (2020-01-22T16:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.