論文の概要: Semantic Search and Recommendation Algorithm
- arxiv url: http://arxiv.org/abs/2412.06649v1
- Date: Mon, 09 Dec 2024 16:43:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:33.637615
- Title: Semantic Search and Recommendation Algorithm
- Title(参考訳): 意味探索と推薦アルゴリズム
- Authors: Aryan Duhan, Aryan Singhal, Shourya Sharma, Neeraj, Arti MK,
- Abstract要約: 本稿では,Word2Vec と Annoy Index を用いて,大規模データセットからの情報検索を効率化するセマンティック検索アルゴリズムを提案する。
データセットを100GBまでテストすることは、高い精度と性能を維持しながら大量のデータを処理する方法の有効性を示す。
- 参考スコア(独自算出の注目度): 0.5242869847419834
- License:
- Abstract: This paper introduces a new semantic search algorithm that uses Word2Vec and Annoy Index to improve the efficiency of information retrieval from large datasets. The proposed approach addresses the limitations of traditional search methods by offering enhanced speed, accuracy, and scalability. Testing on datasets up to 100GB demonstrates the method's effectiveness in processing vast amounts of data while maintaining high precision and performance.
- Abstract(参考訳): 本稿では,Word2Vec と Annoy Index を用いて,大規模データセットからの情報検索を効率化するセマンティック検索アルゴリズムを提案する。
提案手法は, 高速化, 精度, 拡張性により, 従来の探索手法の限界に対処する。
データセットを100GBまでテストすることは、高い精度と性能を維持しながら大量のデータを処理する方法の有効性を示す。
関連論文リスト
- VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
Optimized Search [1.0411820336052784]
本稿では、高度なアルゴリズム、埋め込み、インデックス化技術を活用して洗練された検索を行うVectorSearchを提案する。
提案手法は,革新的なマルチベクタ探索操作と高度な言語モデルによる検索の符号化を利用して,検索精度を大幅に向上させる。
実世界のデータセットの実験では、VectorSearchがベースラインのメトリクスを上回っている。
論文 参考訳(メタデータ) (2024-09-25T21:58:08Z) - Efficient Line Search Method Based on Regression and Uncertainty Quantification [7.724860428430271]
制約のない最適化問題は、通常、最適なステップ長を決定するために反復法を用いて解決される。
本稿では,ベイズ最適化を用いた新しい線探索手法を提案する。
既存の最先端手法と比較して優れた性能を示し、同等のリソース使用量で最適性に多くの問題を解決している。
論文 参考訳(メタデータ) (2024-05-17T16:35:20Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) は、新しい半パラメトリック検索フレームワークである。
既存のニューラル検索手法に似た、高い有効性のための埋め込みベースのインデックスと、従来の用語ベースの検索に似た、迅速かつ費用対効果の高いセットアップを可能にするバイナリトークンインデックスの2つのタイプをサポートする。
埋め込みベースインデックスを使用する場合の高密度検索器DPRよりも3%高いトップ1検索精度と、バイナリトークンインデックスを使用する場合のBM25よりも9%高いトップ1検索精度を実現する。
論文 参考訳(メタデータ) (2024-05-03T08:34:13Z) - Efficient Architecture Search via Bi-level Data Pruning [70.29970746807882]
この研究は、DARTSの双方向最適化におけるデータセット特性の重要な役割を探求する先駆者となった。
我々は、スーパーネット予測力学を計量として活用する新しいプログレッシブデータプルーニング戦略を導入する。
NAS-Bench-201サーチスペース、DARTSサーチスペース、MobileNetのようなサーチスペースに関する総合的な評価は、BDPがサーチコストを50%以上削減することを検証する。
論文 参考訳(メタデータ) (2023-12-21T02:48:44Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
LADR (Lexically-Accelerated Dense Retrieval) は, 既存の高密度検索モデルの効率を向上する, 簡便な手法である。
LADRは、標準ベンチマークでの徹底的な検索と同等の精度とリコールの両方を一貫して達成する。
論文 参考訳(メタデータ) (2023-07-31T15:44:26Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - FDDH: Fast Discriminative Discrete Hashing for Large-Scale Cross-Modal
Retrieval [41.125141897096874]
クロスモーダルハッシュはその有効性と効率性に好まれる。
既存のほとんどのメソッドは、ハッシュコードを学ぶ際に意味情報の識別力を十分に利用していない。
大規模クロスモーダル検索のためのFDDH(Fast Discriminative Discrete Hashing)手法を提案する。
論文 参考訳(メタデータ) (2021-05-15T03:53:48Z) - A Genetic Algorithm for Obtaining Memory Constrained Near-Perfect
Hashing [0.0]
本稿では,検索時の比較回数の最小化と,総コレクションサイズを最小化することに焦点を当てたハッシュテーブルに基づくアプローチを提案する。
論文は、ほぼ完全なハッシュはバイナリ検索よりも高速であるが、完全なハッシュよりも少ないメモリを使用することを示した。
論文 参考訳(メタデータ) (2020-07-16T12:57:15Z) - Progressively Pretrained Dense Corpus Index for Open-Domain Question
Answering [87.32442219333046]
本稿では,段落エンコーダを事前学習するための簡易かつ資源効率の高い手法を提案する。
本手法は,事前学習に7倍の計算資源を使用する既存の高密度検索法より優れている。
論文 参考訳(メタデータ) (2020-04-30T18:09:50Z) - GridMask Data Augmentation [76.79300104795966]
本稿では,新しいデータ拡張手法であるGridMaskを提案する。
情報除去を利用して、様々なコンピュータビジョンタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T07:27:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。