Stably unactivated neurons in ReLU neural networks
- URL: http://arxiv.org/abs/2412.06829v2
- Date: Tue, 17 Dec 2024 17:28:59 GMT
- Title: Stably unactivated neurons in ReLU neural networks
- Authors: Natalie Brownlowe, Christopher R. Cornwell, Ethan Montes, Gabriel Quijano, Grace Stulman, Na Zhang,
- Abstract summary: In ReLU neural networks, the presence of stably unactivated neurons can reduce the network's expressiveness.
In this work, we investigate the probability of a neuron in the second hidden layer of such neural networks being stably unactivated.
- Score: 1.347660513756976
- License:
- Abstract: The choice of architecture of a neural network influences which functions will be realizable by that neural network and, as a result, studying the expressiveness of a chosen architecture has received much attention. In ReLU neural networks, the presence of stably unactivated neurons can reduce the network's expressiveness. In this work, we investigate the probability of a neuron in the second hidden layer of such neural networks being stably unactivated when the weights and biases are initialized from symmetric probability distributions. For networks with input dimension $n_0$, we prove that if the first hidden layer has $n_0+1$ neurons then this probability is exactly $\frac{2^{n_0}+1}{4^{n_0+1}}$, and if the first hidden layer has $n_1$ neurons, $n_1 \le n_0$, then the probability is $\frac{1}{2^{n_1+1}}$. Finally, for the case when the first hidden layer has more neurons than $n_0+1$, a conjecture is proposed along with the rationale. Computational evidence is presented to support the conjecture.
Related papers
- Should Under-parameterized Student Networks Copy or Average Teacher
Weights? [7.777410338143785]
We consider the case when $f*$ itself is a neural network with one hidden layer and $k$ neurons.
As the student has fewer neurons than the teacher, it is unclear whether each of the $n$ student neurons should copy one of the teacher neurons or rather average a group of teacher neurons.
We find for the erf activation function that flow gradient converges either to the optimal copy-average critical point or to another point where each student neuron approximately copies a different teacher neuron.
arXiv Detail & Related papers (2023-11-03T00:21:36Z) - Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features.
Many neurons exhibit $textitmixed selectivity$, i.e., they represent multiple unrelated features.
We propose an automated method for quantifying visual interpretability and an approach for finding meaningful directions in network activation space.
arXiv Detail & Related papers (2023-10-17T17:41:28Z) - Generalization Ability of Wide Neural Networks on $\mathbb{R}$ [8.508360765158326]
We study the generalization ability of the wide two-layer ReLU neural network on $mathbbR$.
We show that: $i)$ when the width $mrightarrowinfty$, the neural network kernel (NNK) uniformly converges to the NTK; $ii)$ the minimax rate of regression over the RKHS associated to $K_1$ is $n-2/3$; $iii)$ if one adopts the early stopping strategy in training a wide neural network, the resulting neural network achieves the minimax rate; $iv
arXiv Detail & Related papers (2023-02-12T15:07:27Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z) - Network size and weights size for memorization with two-layers neural
networks [15.333300054767726]
We propose a new training procedure for ReLU networks, based on complex (as opposed to real) recombination of the neurons.
We show approximate memorization with both $Oleft(fracnd cdot fraclog(1/epsilon)epsilonright)$ neurons, as well as nearly-optimal size of the weights.
arXiv Detail & Related papers (2020-06-04T13:44:57Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.