論文の概要: A Neural Model of Rule Discovery with Relatively Short-Term Sequence Memory
- arxiv url: http://arxiv.org/abs/2412.06839v1
- Date: Sat, 07 Dec 2024 06:38:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:51.380742
- Title: A Neural Model of Rule Discovery with Relatively Short-Term Sequence Memory
- Title(参考訳): 相対的短期記憶を用いたルール発見のニューラルモデル
- Authors: Naoya Arakawa,
- Abstract要約: いくつかの流体インテリジェンスタスクは、イベントシーケンスにおける規則性の発見を必要とする。
ニューラルネットワークモデルは、比較的短期記憶を持つイベントシーケンスにおいて、流体インテリジェンスや規則性発見を説明するために構築された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This report proposes a neural cognitive model for discovering regularities in event sequences. In a fluid intelligence task, the subject is required to discover regularities from relatively short-term memory of the first-seen task. Some fluid intelligence tasks require discovering regularities in event sequences. Thus, a neural network model was constructed to explain fluid intelligence or regularity discovery in event sequences with relatively short-term memory. The model was implemented and tested with delayed match-to-sample tasks.
- Abstract(参考訳): 本稿では,事象列における規則性発見のためのニューラル認知モデルを提案する。
流体インテリジェンスタスクでは、被験者は、第1のタスクの比較的短期記憶から規則性を発見する必要がある。
いくつかの流体インテリジェンスタスクは、イベントシーケンスにおける規則性の発見を必要とする。
このように、比較的短期記憶を持つ事象系列における流体知能や規則性発見を説明するために、ニューラルネットワークモデルを構築した。
モデルは実装され、遅延マッチ・トゥ・サンプル・タスクでテストされた。
関連論文リスト
- Meta-Learning for Neural Network-based Temporal Point Processes [36.31950058651308]
ポイントプロセスは、人間の活動に関連する事象を予測するために広く使われている。
最近の高性能ポイントプロセスモデルでは、長期間にわたって収集された十分な数のイベントを入力する必要がある。
短周期の事象の周期性を考慮した予測のためのメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-01-29T02:42:22Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
教師付きシーケンス表現学習のためのNon-local Recurrent Neural Memory (NRNM)を提案する。
我々のモデルは長距離依存を捉えることができ、潜伏した高レベル特徴を我々のモデルで抽出することができる。
我々のモデルは、これらのシーケンスアプリケーションごとに特別に設計された他の最先端の手法と比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-07-20T07:26:15Z) - The impact of memory on learning sequence-to-sequence tasks [6.603326895384289]
自然言語処理におけるニューラルネットワークの最近の成功は、シーケンシャル・ツー・シーケンス(seq2seq)タスクに新たな注目を集めている。
本稿では,シークエンスにおけるメモリの次数,すなわち非マルコビアン性に対する明示的な制御の利点を生かしたSeq2seqタスクのモデルを提案する。
論文 参考訳(メタデータ) (2022-05-29T14:57:33Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems [4.020523898765404]
異常検出は、与えられたコンテキストにおけるシステムの通常の振る舞いとは異なるデータを検出するタスクである。
LSTM(Long Short-Term Memory)ニューラルネットワークは、時系列を学習するのに特に有用であることが示されている。
私たちは、人工データと実データに対するアプローチを分析します。
論文 参考訳(メタデータ) (2020-10-29T15:26:08Z) - Point process models for sequence detection in high-dimensional neural
spike trains [29.073129195368235]
本研究では,個々のスパイクレベルにおける微細なシーケンスを特徴付ける点過程モデルを開発する。
この超スパースなシーケンスイベント表現は、スパイクトレインモデリングの新しい可能性を開く。
論文 参考訳(メタデータ) (2020-10-10T02:21:44Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
本稿では,離散イベントシーケンス中の異常を検出する1クラスリカレントニューラルネットワークOC4Seqを提案する。
具体的には、OC4Seqは離散イベントシーケンスを遅延空間に埋め込み、異常を容易に検出することができる。
論文 参考訳(メタデータ) (2020-08-31T04:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。