論文の概要: Taming Sensitive Weights : Noise Perturbation Fine-tuning for Robust LLM Quantization
- arxiv url: http://arxiv.org/abs/2412.06858v1
- Date: Sun, 08 Dec 2024 21:46:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:39:39.451457
- Title: Taming Sensitive Weights : Noise Perturbation Fine-tuning for Robust LLM Quantization
- Title(参考訳): テーピング感度ウェイト : ロバストLLM量子化のためのノイズ摂動微細調整
- Authors: Dongwei Wang, Huanrui Yang,
- Abstract要約: 量子化誤差に対する感度重みの影響を抑えるため,NPFT(Noth Perturbation Fine-tuning)を提案する。
NPFTは、外周重量を同定し、外周重量のランダムな摂動を、PEFT最適化によるモデルとして追加する。
OPTおよびLLaMAモデルに適用すると、NPFT法は均一および非一様量子化器の安定な性能向上を実現する。
- 参考スコア(独自算出の注目度): 5.718172547021947
- License:
- Abstract: Quantization is a critical step to enable efficient LLM serving under limited resource. However, previous research observes that certain weights in the LLM, known as outliers, are significantly sensitive to quantization noises. Existing quantization methods leave these outliers as floating points or higher precisions to retain performance, posting challenges on the efficient hardware deployment of the mixed-precision model. This work investigates an alternative way to tame the sensitive weights' impact on the quantization error, by reducing the loss Hessian trace with respect to outliers through an efficient fine-tuning process. We propose Noise Perturbation Fine-tuning (NPFT), which identifies outlier weights and add random weight perturbations on the outliers as the model going through a PEFT optimization. NPFT tames the sensitivity of outlier weights so that the quantized model performance can be improved without special treatment to the outliers. When applied to OPT and LLaMA models, our NPFT method achieves stable performance improvements for both uniform and non-uniform quantizers, while also offering better inference efficiency. Notably, the simplest RTN can achieve performance on par with GPTQ using our NPFT on LLaMA2-7B-4bits benchmark.
- Abstract(参考訳): 量子化は、限られたリソースの下で効率的なLLM機能を実現するための重要なステップである。
しかし、以前の研究では、LLMのある種の重みは、外れ値として知られているが、量子化ノイズにかなり敏感である。
既存の量子化法では、これらのオフレイヤを浮動小数点またはより高い精度で性能を保ち、混合精度モデルの効率的なハードウェア展開に挑戦する。
本研究は, 量子化誤差に対する感度重みの影響を, 効率のよい微調整プロセスを通じて, 外れ値に対するヘッセントレースの損失を減らし, 緩和する方法について検討する。
本稿では,外乱重みを同定し,外乱重みをPEFT最適化のモデルとして,外乱重みにランダムな重み摂動を加えるNPFT(Noth Perturbation Fine-tuning)を提案する。
NPFTは、外周重量の感度を考慮し、外周重量に対して特別な処理をすることなく、量子化されたモデル性能を向上させることができる。
OPTおよびLLaMAモデルに適用すると、NPFT法は一様および非一様量子化器の安定な性能向上を実現するとともに、推論効率も向上する。
特に、最も単純なRTNは、LLaMA2-7B-4bitsベンチマークのNPFTを用いて、GPTQと同等の性能が得られる。
関連論文リスト
- IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
IntLoRAを提案し、整数型(INT)低ランクパラメータを用いて効率限界を押し上げ、量子化拡散モデルに適応させる。
IntLoRAには3つの大きな利点がある: (i) 微調整の場合、事前トレーニングされた重みは量子化され、メモリ使用量が減少する (ii) ストレージの場合、事前トレーニングされた重みと低ランクの重みの両方が、ディスクスペースを少なく消費するINT内にある; (iii) 推論の場合、IntLoRA重みは、効率的な整数乗算やビットシフトによって自然に量子化された事前トレーニングされた重みにマージできる。
論文 参考訳(メタデータ) (2024-10-29T05:50:17Z) - GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs [51.02233412547456]
我々は,Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW)と呼ばれる新しいPEFT法を提案する。
本手法では, ガウス雑音を非正弦波に注入しながら, 正弦波列のみを更新する。
LLaMAモデルによる実験により、GIFT-SWは、同じ計算予算の下で、完全な微調整および現代的なPEFTメソッドよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-27T14:41:14Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks [4.827161693957252]
非量子化要素演算は、低精度モデルの推論コストを支配している。
PikeLPNモデルは、要素演算と乗算累積演算の両方に量子化を適用することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-03-29T18:23:34Z) - QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models [44.515165695546614]
量子化アウェアトレーニング(QAT)はソリューションを提供するが、トレーニング後の量子化(PTQ)は大規模言語モデル(LLM)のより実践的なアプローチとなる。
LLM向けに設計された高精度かつ効率的な低ビット幅PTQ法QLLMを提案する。
論文 参考訳(メタデータ) (2023-10-12T05:25:49Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
そこで本研究では,現在のPTQ手法のプラグインとして利用できるノルム調整手法を提案する。
本手法は,重量のみの量子化と重みとアクティベーションの連成量子化の両面で有意な改善を示す。
私たちのシンプルで効果的なアプローチは、現実世界のアプリケーションにとってより実用的です。
論文 参考訳(メタデータ) (2023-09-06T06:51:15Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。