論文の概要: Balancing Efficiency and Effectiveness: An LLM-Infused Approach for Optimized CTR Prediction
- arxiv url: http://arxiv.org/abs/2412.06860v1
- Date: Mon, 09 Dec 2024 02:36:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:49.617225
- Title: Balancing Efficiency and Effectiveness: An LLM-Infused Approach for Optimized CTR Prediction
- Title(参考訳): バランス効率と有効性:最適化CTR予測のためのLLM注入アプローチ
- Authors: Guoxiao Zhang, Yi Wei, Yadong Zhang, Huajian Feng, Qiang Liu,
- Abstract要約: エンド・ツー・エンドの深い意味情報をモデル化する新しいアプローチを導入する。
私たちのフレームワークは効率と効率のバランスをとるために慎重に設計されています。
Meituan sponsored-searchシステムで実施したオンラインA/Bテストでは,コスト・パー・マイル(CPM)とクリック・スルー・レート(CTR)でベースライン・モデルよりも有意に優れていた。
- 参考スコア(独自算出の注目度): 19.657522015829922
- License:
- Abstract: Click-Through Rate (CTR) prediction is essential in online advertising, where semantic information plays a pivotal role in shaping user decisions and enhancing CTR effectiveness. Capturing and modeling deep semantic information, such as a user's preference for "H\"aagen-Dazs' HEAVEN strawberry light ice cream" due to its health-conscious and premium attributes, is challenging. Traditional semantic modeling often overlooks these intricate details at the user and item levels. To bridge this gap, we introduce a novel approach that models deep semantic information end-to-end, leveraging the comprehensive world knowledge capabilities of Large Language Models (LLMs). Our proposed LLM-infused CTR prediction framework(Multi-level Deep Semantic Information Infused CTR model via Distillation, MSD) is designed to uncover deep semantic insights by utilizing LLMs to extract and distill critical information into a smaller, more efficient model, enabling seamless end-to-end training and inference. Importantly, our framework is carefully designed to balance efficiency and effectiveness, ensuring that the model not only achieves high performance but also operates with optimal resource utilization. Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and CTR, validating its effectiveness, scalability, and balanced approach in real-world applications.
- Abstract(参考訳): CTR(Click-Through Rate)予測は、セマンティック情報がユーザ決定の形成とCTRの有効性向上に重要な役割を果たしているオンライン広告において不可欠である。
健康意識とプレミアム属性から「H\」aagen-Dazs' HEAVENイチゴ軽アイスクリーム」をユーザが好むような深い意味情報をキャプチャし、モデル化することは困難である。
伝統的なセマンティックモデリングは、ユーザーとアイテムのレベルでこれらの複雑な詳細を見落としていることが多い。
このギャップを埋めるために,我々は,Large Language Models (LLMs) の包括的世界知識機能を活用し,深い意味情報をエンドツーエンドにモデル化する新たなアプローチを導入する。
提案するLCM注入CTR予測フレームワーク(マルチレベルディープセマンティック情報注入CTRモデル:Distillation, MSD)は,LCMを用いて重要情報をより小型で効率的なモデルに抽出・抽出し,シームレスなエンドツーエンドのトレーニングと推論を可能にする。
重要なことは、我々のフレームワークは効率と効率のバランスをとるために慎重に設計されており、モデルが高い性能を達成するだけでなく、最適な資源利用で機能することを保証する。
オンラインA/Bテストでは,提案手法はコストパーマイル(CPM)とCTRでベースラインモデルを大幅に上回り,実世界のアプリケーションにおける有効性,スケーラビリティ,バランスの取れたアプローチを検証した。
関連論文リスト
- MERLOT: A Distilled LLM-based Mixture-of-Experts Framework for Scalable Encrypted Traffic Classification [19.476061046309052]
本稿では,暗号化されたトラフィック分類に最適化された蒸留大言語モデルのスケーラブルな混合実験(MoE)による改良について述べる。
10のデータセットの実験では、最先端モデルよりも優れた、あるいは競合的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-20T03:01:41Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
本稿では,知識インフォームドモデルに基づく残留強化学習フレームワークを提案する。
交通専門家の知識を仮想環境モデルに統合し、基本力学にIntelligent Driver Model(IDM)、残留力学にニューラルネットワークを使用する。
本稿では,従来の制御手法を残差RLと組み合わせて,スクラッチから学習することなく,効率的な学習と政策最適化を容易にする新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-08-30T16:16:57Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - Learn To Learn More Precisely [30.825058308218047]
より正確に学習すること」は、モデルにデータから正確な目標知識を学習させることを目的としている。
学習知識の一貫性を最大化するために,メタ自己蒸留(Meta Self-Distillation:MSD)という,シンプルで効果的なメタ学習フレームワークを提案する。
MSDは、標準シナリオと拡張シナリオの両方において、数ショットの分類タスクにおいて顕著なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-08-08T17:01:26Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
LLM(Large Language Models)は、人間に似たテキストの理解と生成に優れた言語モデルである。
本稿では,言語モデル(LLM)と情報検索(IR)システムの統合戦略について検討する。
論文 参考訳(メタデータ) (2023-11-21T02:01:01Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
CTR(Click-Through Rate)予測は、製品とコンテンツの推奨において重要なタスクである。
本稿では,CTR予測のための動的埋め込み学習を実現するモデルを提案する。
論文 参考訳(メタデータ) (2023-05-03T12:34:45Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC)は、与えられたテキストパスを理解し、それに基づいて質問に答える機能を明らかにする。
MRCの既存の研究は、Exact Matchのようなメトリクスによって評価されたパフォーマンスを改善するために、大規模なモデルとコーパスに大きく依存している。
モデル機能とデータ特性の深い理解は、適切なトレーニングデータでモデルをフィードするのに役立ちます。
論文 参考訳(メタデータ) (2022-03-05T14:15:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。