論文の概要: FP=xINT:A Low-Bit Series Expansion Algorithm for Post-Training Quantization
- arxiv url: http://arxiv.org/abs/2412.06865v1
- Date: Mon, 09 Dec 2024 08:50:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:48.901570
- Title: FP=xINT:A Low-Bit Series Expansion Algorithm for Post-Training Quantization
- Title(参考訳): FP=xINT:ポストトレーニング量子化のための低ビット系列展開アルゴリズム
- Authors: Boyang Zhang, Daning Cheng, Yunquan Zhang, Fangmin Liu,
- Abstract要約: PTQ(Post-Training Quantization)は、事前訓練されたフル精度(FP)モデルを、トレーニングなしで量子化したバージョンに変換する。
既存の手法は、量子化ノイズによる極端に低い設定で性能と量子化効率を著しく低下させる。
この問題に対処するためのディープモデルシリーズ拡張フレームワークを導入し、キャリブレーションセットや微調整を必要とせずに、不定値モデルの迅速かつ正確な近似を可能にする。
- 参考スコア(独自算出の注目度): 3.560046736432574
- License:
- Abstract: Post-Training Quantization (PTQ) converts pre-trained Full-Precision (FP) models into quantized versions without training. While existing methods reduce size and computational costs, they also significantly degrade performance and quantization efficiency at extremely low settings due to quantization noise. We introduce a deep model series expansion framework to address this issue, enabling rapid and accurate approximation of unquantized models without calibration sets or fine-tuning. This is the first use of series expansion for neural network quantization. Specifically, our method expands the FP model into multiple low-bit basis models. To ensure accurate quantization, we develop low-bit basis model expansions at different granularities (tensor, layer, model), and theoretically confirm their convergence to the dense model, thus restoring FP model accuracy. Additionally, we design AbelianAdd/Mul operations between isomorphic models in the low-bit expansion, forming an Abelian group to ensure operation parallelism and commutativity. The experiments show that our algorithm achieves state-of-the-art performance in low-bit settings; for example, 4-bit quantization of ResNet-50 surpasses the original accuracy, reaching 77.03%. The code will be made public.
- Abstract(参考訳): PTQ(Post-Training Quantization)は、事前訓練されたフル精度(FP)モデルを、トレーニングなしで量子化したバージョンに変換する。
既存の手法はサイズと計算コストを低減させるが、量子化ノイズにより非常に低い設定で性能と量子化効率を著しく低下させる。
この問題に対処するためのディープモデルシリーズ拡張フレームワークを導入し、キャリブレーションセットや微調整を必要とせずに、不定値モデルの迅速かつ正確な近似を可能にする。
これは、ニューラルネットワーク量子化におけるシリーズ展開の最初の使用である。
具体的には、FPモデルを複数の低ビットベースモデルに拡張する。
正確な量子化を保証するため、異なる粒度(テンソル、層、モデル)で低ビットベースモデル展開を開発し、その収束性を理論的に確認し、FPモデルの精度を復元する。
さらに、低ビット展開における同型モデル間のAbelianAdd/Mul演算を設計し、演算並列性と可換性を確保するためにAbelianグループを形成する。
例えば、ResNet-50の4ビット量子化は元の精度を超え、77.03%に達した。
コードは公開されます。
関連論文リスト
- Diffusion Product Quantization [18.32568431229839]
極端圧縮条件下での拡散モデルの量子化について検討し、性能を維持しながらモデルサイズを小さくする。
我々は、ImageNet上のDiTモデルに圧縮法を適用し、他の量子化手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-11-19T07:47:37Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
低ビット量子化は、エッジ展開のための画像超解像(SR)モデルを圧縮するために広く普及している。
低ビット量子化は、フル精度(FP)と比較してSRモデルの精度を低下させることが知られている。
本稿では2DQuantという画像超解像のための2段階の低ビット後量子化(PTQ)法を提案する。
論文 参考訳(メタデータ) (2024-06-10T06:06:11Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - LLM-QAT: Data-Free Quantization Aware Training for Large Language Models [38.76165207636793]
本研究では,事前学習モデルにより生成した世代を利用したデータフリー蒸留法を提案する。
重みとアクティベーションの定量化に加えて、スループット向上に重要なKVキャッシュの定量化も行います。
我々は7B,13B,30BのLLaMAモデルを4ビット以下の量子化レベルで実験した。
論文 参考訳(メタデータ) (2023-05-29T05:22:11Z) - Modular Quantization-Aware Training for 6D Object Pose Estimation [52.9436648014338]
エッジアプリケーションは、リソース制約された組み込みプラットフォーム上で効率的な6Dオブジェクトのポーズ推定を要求する。
本稿では,適応的かつ高精度な量子化学習戦略であるMQAT(Modular Quantization-Aware Training)を紹介する。
MQATは、モジュール固有のビット精度を導出し、モジュール固有の量子化シーケンスを導出し、最先端の均一および混合精度の量子化技術によって生成されたものより優れた量子化モデルをもたらす。
論文 参考訳(メタデータ) (2023-03-12T21:01:54Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - Hyperspherical Quantization: Toward Smaller and More Accurate Models [17.154801913113566]
ベクトル量子化は、モデルウェイトを高精度な埋め込みでインデックス化することで、モデルサイズを減らすことを目的としている。
バイナリや他の低精度量子化法は、モデルのサイズを32$times$まで削減できるが、かなりの精度低下を犠牲にすることができる。
より小型で高精度な圧縮モデルを生成するために, 3次量子化のための効率的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-24T04:42:15Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - CTMQ: Cyclic Training of Convolutional Neural Networks with Multiple
Quantization Steps [1.3106063755117399]
本稿では,低ビット量子化畳み込みニューラルネットワーク(CNN)における高機能化を実現するために,複数サイクルの訓練を施したトレーニング手法を提案する。
提案手法は,精度の高いモデルの訓練能力を反復的に活用することにより,各サイクルにおける低ビット量子化モデルの強化された重み付けを実現できる。
特に、トレーニング方法は、ImageNetデータセット上の2項化されたResNet-18のTop-1とTop-5の精度をそれぞれ5.80%と6.85%向上させることができる。
論文 参考訳(メタデータ) (2022-06-26T05:54:12Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
多様なビット幅をサポートする全量子化のためのモデルを訓練する手法を提案する。
重みの多様性を高めるためにウェーブレット分解と再構成を用いる。
同じ精度で訓練された専用モデルに匹敵する精度が得られる。
論文 参考訳(メタデータ) (2021-05-04T08:10:50Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
ASRモデルに対する整数のみのゼロショット量子化スキームであるQ-ASRを提案する。
全精度ベースラインモデルと比較すると,wrの変化は無視できる。
Q-ASRは、WER劣化が少ない4倍以上の圧縮率を示します。
論文 参考訳(メタデータ) (2021-03-31T06:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。