論文の概要: Diffusion Product Quantization
- arxiv url: http://arxiv.org/abs/2411.12306v1
- Date: Tue, 19 Nov 2024 07:47:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:36:38.447362
- Title: Diffusion Product Quantization
- Title(参考訳): 拡散生成物の量子化
- Authors: Jie Shao, Hanxiao Zhang, Jianxin Wu,
- Abstract要約: 極端圧縮条件下での拡散モデルの量子化について検討し、性能を維持しながらモデルサイズを小さくする。
我々は、ImageNet上のDiTモデルに圧縮法を適用し、他の量子化手法よりも一貫して優れています。
- 参考スコア(独自算出の注目度): 18.32568431229839
- License:
- Abstract: In this work, we explore the quantization of diffusion models in extreme compression regimes to reduce model size while maintaining performance. We begin by investigating classical vector quantization but find that diffusion models are particularly susceptible to quantization error, with the codebook size limiting generation quality. To address this, we introduce product quantization, which offers improved reconstruction precision and larger capacity -- crucial for preserving the generative capabilities of diffusion models. Furthermore, we propose a method to compress the codebook by evaluating the importance of each vector and removing redundancy, ensuring the model size remaining within the desired range. We also introduce an end-to-end calibration approach that adjusts assignments during the forward pass and optimizes the codebook using the DDPM loss. By compressing the model to as low as 1 bit (resulting in over 24 times reduction in model size), we achieve a balance between compression and quality. We apply our compression method to the DiT model on ImageNet and consistently outperform other quantization approaches, demonstrating competitive generative performance.
- Abstract(参考訳): 本研究では, 極端圧縮条件下での拡散モデルの定量化について検討し, 性能を保ちながらモデルサイズを小さくする。
古典的ベクトル量子化の研究から始めるが、拡散モデルは特に量子化誤差の影響を受けやすく、コードブックサイズは生成品質を制限している。
これを解決するために,製品量子化を導入し,再現精度の向上とキャパシティの向上を実現し,拡散モデルの生成能力の維持に不可欠である。
さらに,各ベクトルの重要性を評価し,冗長性を取り除き,所望の範囲内にあるモデルサイズを確保することにより,コードブックを圧縮する手法を提案する。
また、フォワードパス中の割り当てを調整するエンドツーエンドのキャリブレーション手法を導入し、DDPM損失を利用してコードブックを最適化する。
モデルを1ビット以下に圧縮することで(モデルサイズを24倍以上削減する)、圧縮と品質のバランスがとれる。
我々は、ImageNet上のDiTモデルに圧縮法を適用し、他の量子化手法を一貫して上回り、競争力のある生成性能を示す。
関連論文リスト
- Timestep-Aware Correction for Quantized Diffusion Models [28.265582848911574]
本稿では,量子化誤差を動的に補正する量子化拡散モデルの時間ステップ対応補正法を提案する。
提案手法を低精度拡散モデルに応用することにより,出力品質の大幅な向上が期待できる。
論文 参考訳(メタデータ) (2024-07-04T13:22:31Z) - BitsFusion: 1.99 bits Weight Quantization of Diffusion Model [43.11229823281721]
安定拡散v1.5から1.99ビットまでのUNetを量子化し、7.9倍のサイズのモデルを実現する新しい重み量子化法を開発した。
我々は、様々なベンチマークデータセットと人による評価を通じて、量子化モデルを広範囲に評価し、その優れた生成品質を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:23Z) - Lossy Image Compression with Foundation Diffusion Models [10.407650300093923]
本研究は,拡散を用いた量子化誤差の除去をデノナイジングタスクとして定式化し,送信された遅延画像の損失情報を復元する。
当社のアプローチでは,完全な拡散生成プロセスの10%未満の実行が可能であり,拡散モデルにアーキテクチャ的な変更は不要である。
論文 参考訳(メタデータ) (2024-04-12T16:23:42Z) - QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning [52.157939524815866]
本稿では,現行手法の有効性を損なう量子拡散モデルの3つの特性を実証的に明らかにする。
重要な時間的情報を保持する層と、ビット幅の低減に敏感な層という、2つの重要なタイプの量子化層を同定する。
提案手法は,3つの高分解能画像生成タスクに対して評価し,様々なビット幅設定で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-02-06T03:39:44Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
本稿では,テキスト・画像拡散モデルのための学習後量子化手法(プログレッシブ・アンド・リラクシング)を提案する。
我々は,安定拡散XLの量子化を初めて達成し,その性能を維持した。
論文 参考訳(メタデータ) (2023-11-10T09:10:09Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
本稿では,効率的な画像生成のための拡散モデル(ADP-DM)の高精度なデータフリーポストトレーニング量子化フレームワークを提案する。
提案手法は, 拡散モデルの学習後の量子化を, 同様の計算コストで, 非常に大きなマージンで高速化する。
論文 参考訳(メタデータ) (2023-05-30T04:00:35Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization [32.60139548889592]
本稿では,新しいワンショットプルーニング量子化(OPQ)を提案する。
OPQは、事前訓練された重みパラメータのみによる圧縮割り当てを解析的に解決する。
本稿では,共通コードブックを共有するために各レイヤの全チャネルを強制する,統一的なチャネルワイド量子化手法を提案する。
論文 参考訳(メタデータ) (2022-05-23T09:05:25Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。