Variable Selection for Comparing High-dimensional Time-Series Data
- URL: http://arxiv.org/abs/2412.06870v1
- Date: Mon, 09 Dec 2024 12:08:08 GMT
- Title: Variable Selection for Comparing High-dimensional Time-Series Data
- Authors: Kensuke Mitsuzawa, Margherita Grossi, Stefano Bortoli, Motonobu Kanagawa,
- Abstract summary: An approach is proposed to select variables and time intervals where the two series are significantly different.
In applications where one time series is an output from a computationally expensive simulator, the approach may be used for validating the simulator against real data.
The validity and limitations of the proposed approach are investigated in synthetic data experiments.
- Score: 1.5824413993211348
- License:
- Abstract: Given a pair of multivariate time-series data of the same length and dimensions, an approach is proposed to select variables and time intervals where the two series are significantly different. In applications where one time series is an output from a computationally expensive simulator, the approach may be used for validating the simulator against real data, for comparing the outputs of two simulators, and for validating a machine learning-based emulator against the simulator. With the proposed approach, the entire time interval is split into multiple subintervals, and on each subinterval, the two sample sets are compared to select variables that distinguish their distributions and a two-sample test is performed. The validity and limitations of the proposed approach are investigated in synthetic data experiments. Its usefulness is demonstrated in an application with a particle-based fluid simulator, where a deep neural network model is compared against the simulator, and in an application with a microscopic traffic simulator, where the effects of changing the simulator's parameters on traffic flows are analysed.
Related papers
- Compositional simulation-based inference for time series [21.9975782468709]
simulators frequently emulate real-world dynamics through thousands of single-state transitions over time.
We propose an SBI framework that can exploit such Markovian simulators by locally identifying parameters consistent with individual state transitions.
We then compose these local results to obtain a posterior over parameters that align with the entire time series observation.
arXiv Detail & Related papers (2024-11-05T01:55:07Z) - Querying Labeled Time Series Data with Scenario Programs [0.0]
We propose a formal definition of what constitutes a match between a real-world labeled time series data item and a simulated scenario.
We present a definition and algorithm for matching scalable beyond the autonomous vehicles domain.
arXiv Detail & Related papers (2024-06-25T15:15:27Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - LibSignal: An Open Library for Traffic Signal Control [8.290016666341755]
This paper introduces a library for cross-simulator comparison of reinforcement learning models in traffic signal control tasks.
It supports commonly-used simulators in traffic signal control tasks, including of Urban MObility(SUMO) and CityFlow.
This is the first time that these methods have been compared fairly under the same datasets with different simulators.
arXiv Detail & Related papers (2022-11-19T10:21:50Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Approximate Bayesian Computation with Path Signatures [0.5156484100374059]
We introduce the use of path signatures as a natural candidate feature set for constructing distances between time series data.
Our experiments show that such an approach can generate more accurate approximate Bayesian posteriors than existing techniques for time series models.
arXiv Detail & Related papers (2021-06-23T17:25:43Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Recurrent convolutional neural network for the surrogate modeling of
subsurface flow simulation [0.0]
We propose to combine SegNet with ConvLSTM layers for the surrogate modeling of numerical flow simulation.
Results show that the proposed method improves the performance of SegNet based surrogate model remarkably when the output of the simulation is time series data.
arXiv Detail & Related papers (2020-10-08T09:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.