The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data
- URL: http://arxiv.org/abs/2412.06877v2
- Date: Fri, 06 Jun 2025 11:05:49 GMT
- Title: The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data
- Authors: Thomas Pouplin, Katarzyna Kobalczyk, Hao Sun, Mihaela van der Schaar,
- Abstract summary: TEDUO is a novel training pipeline for offline language-conditioned policy learning in symbolic environments.<n>Our approach harnesses large language models (LLMs) in a dual capacity: first, as automatization tools augmenting offline datasets with richer annotations, and second, as generalizable instruction-following agents.
- Score: 50.544186914115045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing autonomous agents capable of performing complex, multi-step decision-making tasks specified in natural language remains a significant challenge, particularly in realistic settings where labeled data is scarce and real-time experimentation is impractical. Existing reinforcement learning (RL) approaches often struggle to generalize to unseen goals and states, limiting their applicability. In this paper, we introduce TEDUO, a novel training pipeline for offline language-conditioned policy learning in symbolic environments. Unlike conventional methods, TEDUO operates on readily available, unlabeled datasets and addresses the challenge of generalization to previously unseen goals and states. Our approach harnesses large language models (LLMs) in a dual capacity: first, as automatization tools augmenting offline datasets with richer annotations, and second, as generalizable instruction-following agents. Empirical results demonstrate that TEDUO achieves data-efficient learning of robust language-conditioned policies, accomplishing tasks beyond the reach of conventional RL frameworks or out-of-the-box LLMs alone.
Related papers
- Large Language Models as Attribution Regularizers for Efficient Model Training [0.0]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains.
We introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks.
Our approach yields superior performance in few-shot learning scenarios.
arXiv Detail & Related papers (2025-02-27T16:55:18Z) - A Practical Guide to Fine-tuning Language Models with Limited Data [9.413178499853156]
Employing pre-trained Large Language Models (LLMs) has become the de facto standard in Natural Language Processing (NLP) despite their extensive data requirements.
Motivated by the recent surge in research focused on training LLMs with limited data, this paper surveys recent transfer learning approaches to optimize model performance in downstream tasks where data is scarce.
arXiv Detail & Related papers (2024-11-14T15:55:37Z) - Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts [5.520335305387487]
We propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt.
MLPrompt translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it.
We introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances.
arXiv Detail & Related papers (2024-09-17T10:33:27Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM)
Unlike traditional imputation methods, CLAIM utilizes contextually relevant natural language descriptors to fill missing values.
Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques.
arXiv Detail & Related papers (2024-05-28T00:08:29Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Grounding Language with Visual Affordances over Unstructured Data [26.92329260907805]
We propose a novel approach to efficiently learn language-conditioned robot skills from unstructured, offline and reset-free data.
We exploit a self-supervised visuo-lingual affordance model, which requires as little as 1% of the total data with language.
We find that our method is capable of completing long-horizon, multi-tier tasks in the real world, while requiring an order of magnitude less data than previous approaches.
arXiv Detail & Related papers (2022-10-04T21:16:48Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.