Gradient-based facial encoding for key generation to encrypt and decrypt multimedia data
- URL: http://arxiv.org/abs/2412.06927v2
- Date: Thu, 09 Jan 2025 18:44:39 GMT
- Title: Gradient-based facial encoding for key generation to encrypt and decrypt multimedia data
- Authors: Ankit Kumar Patel, Dewanshi Paul, Sarthak Giri, Sneha Chaudhary, Bikalpa Gautam,
- Abstract summary: Security systems relying on passwords are vulnerable to being forgotten, guessed, or breached.
This paper introduces a biocryptosystem utilizing face recognition techniques to address these issues.
The proposed system creates a distinct 32-bit encryption key derived from facial features.
- Score: 0.873811641236639
- License:
- Abstract: Security systems relying on passwords are vulnerable to being forgotten, guessed, or breached. Likewise, biometric systems that operate independently are at risk of template spoofing and replay incidents. This paper introduces a biocryptosystem utilizing face recognition techniques to address these issues, allowing for the encryption and decryption of various file types through the Advanced Encryption Standard (AES). The proposed system creates a distinct 32-bit encryption key derived from facial features identified by Histogram of Oriented Gradients (HOG) and categorized using Support Vector Machines (SVM). HOG efficiently identifies edge-aligned facial features, even in dim lighting, ensuring that reliable biometric keys can be generated. This key is then used with AES to encrypt and decrypt a variety of data formats, such as text, audio, and video files. This encryption key, derived from an individual's distinctive facial traits, is exceedingly challenging for adversaries to reproduce or guess. The security and performance of the system have been validated through experiments using several metrics, including correlation analysis, Shannon entropy, normalized Hamming distance, and the avalanche effect on 25 different file types. Potential uses for the proposed system include secure file sharing, online transactions, and data archiving, making it a strong and trustworthy approach to safeguarding sensitive information by integrating the uniqueness of facial biometrics with the established security of AES encryption.
Related papers
- Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.
We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Cryptanalysis of Cancelable Biometrics Vault [0.552480439325792]
Cancelable Biometrics (CB) stands for a range of biometric transformation schemes combining biometrics with user specific tokens to generate secure templates.
In biometrics, a key-binding scheme is used for protecting a cryptographic key using a biometric data.
Our cryptanalysis introduces a new perspective by uncovering the CBV scheme's revocability and linkability vulnerabilities.
arXiv Detail & Related papers (2025-01-10T08:36:59Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption [1.8749305679160366]
We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
arXiv Detail & Related papers (2024-06-24T16:56:22Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor.
Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space.
arXiv Detail & Related papers (2023-03-09T11:03:52Z) - Encryption and encoding of facial images into quick response and high
capacity color 2d code for biometric passport security system [0.0]
multimodal biometric, secure encrypted data and encrypted biometric encoded into the QR code-based biometric-passport authentication method is proposed.
The facial mark size recognition is initially achieved.
The encrypted biometric passport information that is publicly accessible is encoded into the QR code and inserted into the electronic passport to improve protection.
arXiv Detail & Related papers (2022-03-17T05:25:39Z) - Speckle-based optical cryptosystem and its application for human face
recognition via deep learning [17.169570487230747]
Face images are sensitive biometric data that should be carefully protected.
In this study, a plain yet high-efficient speckle-based optical cryptosystem is proposed and implemented.
The proposed cryptosystem has wide applicability, and it may open a new avenue for high-security complex information encryption and decryption.
arXiv Detail & Related papers (2022-01-26T07:18:02Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.