Creating a Cooperative AI Policymaking Platform through Open Source Collaboration
- URL: http://arxiv.org/abs/2412.06936v1
- Date: Mon, 09 Dec 2024 19:25:29 GMT
- Title: Creating a Cooperative AI Policymaking Platform through Open Source Collaboration
- Authors: Aiden Lewington, Alekhya Vittalam, Anshumaan Singh, Anuja Uppuluri, Arjun Ashok, Ashrith Mandayam Athmaram, Austin Milt, Benjamin Smith, Charlie Weinberger, Chatanya Sarin, Christoph Bergmeir, Cliff Chang, Daivik Patel, Daniel Li, David Bell, Defu Cao, Donghwa Shin, Edward Kang, Edwin Zhang, Enhui Li, Felix Chen, Gabe Smithline, Haipeng Chen, Henry Gasztowtt, Hoon Shin, Jiayun Zhang, Joshua Gray, Khai Hern Low, Kishan Patel, Lauren Hannah Cooke, Marco Burstein, Maya Kalapatapu, Mitali Mittal, Raymond Chen, Rosie Zhao, Sameen Majid, Samya Potlapalli, Shang Wang, Shrenik Patel, Shuheng Li, Siva Komaragiri, Song Lu, Sorawit Siangjaeo, Sunghoo Jung, Tianyu Zhang, Valery Mao, Vikram Krishnakumar, Vincent Zhu, Wesley Kam, Xingzhe Li, Yumeng Liu,
- Abstract summary: Current incentive structures and regulatory delays may hinder responsible AI development and deployment.<n>To address these challenges, we propose developing a large multimodal text and economic-timeseries foundation model.
- Score: 14.120384828192067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in artificial intelligence (AI) present significant risks and opportunities, requiring improved governance to mitigate societal harms and promote equitable benefits. Current incentive structures and regulatory delays may hinder responsible AI development and deployment, particularly in light of the transformative potential of large language models (LLMs). To address these challenges, we propose developing the following three contributions: (1) a large multimodal text and economic-timeseries foundation model that integrates economic and natural language policy data for enhanced forecasting and decision-making, (2) algorithmic mechanisms for eliciting diverse and representative perspectives, enabling the creation of data-driven public policy recommendations, and (3) an AI-driven web platform for supporting transparent, inclusive, and data-driven policymaking.
Related papers
- The California Report on Frontier AI Policy [110.35302787349856]
Continued progress in frontier AI carries the potential for profound advances in scientific discovery, economic productivity, and broader social well-being.<n>As the epicenter of global AI innovation, California has a unique opportunity to continue supporting developments in frontier AI.<n>Report derives policy principles that can inform how California approaches the use, assessment, and governance of frontier AI.
arXiv Detail & Related papers (2025-06-17T23:33:21Z) - AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - Towards deployment-centric multimodal AI beyond vision and language [67.02589156099391]
We advocate a deployment-centric workflow that incorporates deployment constraints early to reduce the likelihood of undeployable solutions.
We identify common multimodal-AI-specific challenges shared across disciplines and examine three real-world use cases.
By fostering multidisciplinary dialogue and open research practices, our community can accelerate deployment-centric development for broad societal impact.
arXiv Detail & Related papers (2025-04-04T17:20:05Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.
LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.
These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.
This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI)
This paper explores potential areas where statisticians can make important contributions to the development of LLMs.
We focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation.
arXiv Detail & Related papers (2025-02-25T03:40:36Z) - Governing AI Agents [0.2913760942403036]
Article looks at the economic theory of principal-agent problems and the common law doctrine of agency relationships.
It identifies problems arising from AI agents, including issues of information asymmetry, discretionary authority, and loyalty.
It argues that new technical and legal infrastructure is needed to support governance principles of inclusivity, visibility, and liability.
arXiv Detail & Related papers (2025-01-14T07:55:18Z) - Modular Conversational Agents for Surveys and Interviews [6.019313905775819]
This paper introduces a modular approach and its resulting parameterized process for designing AI agents.
We demonstrate the adaptability, generalizability, and efficacy of our modular approach through three empirical studies.
The results suggest that the AI agent increases completion rates and response quality.
arXiv Detail & Related papers (2024-12-22T15:00:16Z) - Towards Responsible Governing AI Proliferation [0.0]
The paper introduces the Proliferation' paradigm, which anticipates the rise of smaller, decentralized, open-sourced AI models.
It posits that these developments are both probable and likely to introduce both benefits and novel risks.
arXiv Detail & Related papers (2024-12-18T13:10:35Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
We argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains.
In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability.
arXiv Detail & Related papers (2024-02-28T15:19:33Z) - Generative AI in EU Law: Liability, Privacy, Intellectual Property, and Cybersecurity [1.9806397201363817]
This paper delves into the legal and regulatory implications of Generative AI and Large Language Models (LLMs) in the European Union context.
It analyzes aspects of liability, privacy, intellectual property, and cybersecurity.
It proposes recommendations to ensure the safe and compliant deployment of generative models.
arXiv Detail & Related papers (2024-01-14T19:16:29Z) - Data Equity: Foundational Concepts for Generative AI [0.0]
GenAI promises immense potential to drive digital and social innovation.
GenAI has the potential to democratize access and usage of technologies.
However, left unchecked, it could deepen inequities.
arXiv Detail & Related papers (2023-10-27T05:19:31Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
We show that the AI Economist framework enables effective, flexible, and interpretable policy design using two-level reinforcement learning and data-driven simulations.
We find that log-linear policies trained using RL significantly improve social welfare, based on both public health and economic outcomes, compared to past outcomes.
arXiv Detail & Related papers (2021-08-06T01:30:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.