論文の概要: Access Point Deployment for Localizing Accuracy and User Rate in Cell-Free Systems
- arxiv url: http://arxiv.org/abs/2412.07094v1
- Date: Tue, 10 Dec 2024 01:22:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:09.773243
- Title: Access Point Deployment for Localizing Accuracy and User Rate in Cell-Free Systems
- Title(参考訳): セルフリーシステムにおけるアクセスポイント配置による精度とユーザ率の定量化
- Authors: Fanfei Xu, Shengheng Liu, Zihuan Mao, Shangqing Shi, Dazhuan Xu, Dongming Wang, Yongming Huang,
- Abstract要約: 次世代モバイルネットワークは、ユビキタスなカバレッジとネットワークセンシングを提供するように設計されている。
細胞フリーは、この展望を実現するための有望な技術である。
本稿では,セルフリーシステムにおけるポイント(AP)配置の問題に取り組むことを目的とする。
- 参考スコア(独自算出の注目度): 22.49391459228811
- License:
- Abstract: Evolving next-generation mobile networks is designed to provide ubiquitous coverage and networked sensing. With utility of multi-view sensing and multi-node joint transmission, cell-free is a promising technique to realize this prospect. This paper aims to tackle the problem of access point (AP) deployment in cell-free systems to balance the sensing accuracy and user rate. By merging the D-optimality with Euclidean criterion, a novel integrated metric is proposed to be the objective function for both max-sum and max-min problems, which respectively guarantee the overall and lowest performance in multi-user communication and target tracking scenario. To solve the corresponding high dimensional non-convex multi-objective problem, the Soft actor-critic (SAC) is utilized to avoid risk of local optimal result. Numerical results demonstrate that proposed SAC-based APs deployment method achieves $20\%$ of overall performance and $120\%$ of lowest performance.
- Abstract(参考訳): 次世代のモバイルネットワークは、ユビキタスなカバレッジとネットワークセンシングを提供するように設計されている。
マルチビューセンシングとマルチノードジョイントトランスミッションの活用により,セルフリーはこの可能性を実現する上で有望な技術である。
本稿では,セルレスシステムにおけるアクセスポイント(AP)配置の問題に対処し,センサの精度とユーザ率のバランスをとることを目的とする。
D-最適度をユークリッド基準と組み合わせることで、最大値と最大値の両方の問題に対する目的関数として、マルチユーザ通信と目標追跡シナリオにおける全体的な性能と最低値を保証する新しい統合計量が提案される。
対応する高次元非凸多目的問題を解決するために,ソフトアクター・クリティック(SAC)を用いて局所最適結果のリスクを回避する。
数値計算の結果,提案したSACベースのAPs配置法は,全体の性能が20ドル%,最低性能が120ドル%であることがわかった。
関連論文リスト
- A RankNet-Inspired Surrogate-Assisted Hybrid Metaheuristic for Expensive Coverage Optimization [3.470566170862975]
RankNet-Inspired Surrogate-assisted Hybrid Metaheuristic (RI-SHM)を提案する。
提案アルゴリズムは,最大300次元の大規模カバレッジ最適化タスクを,望ましくは1,800以上の目標を効果的に処理できる。
EMVOPの最先端アルゴリズムと比較すると、RI-SHMは全てのテストインスタンスで56.5ドル%まで性能が向上している。
論文 参考訳(メタデータ) (2025-01-13T14:49:05Z) - A Deep Learning Approach for User-Centric Clustering in Cell-Free Massive MIMO Systems [7.202538088166535]
ユーザクラスタリング問題を解決するために,ディープラーニングに基づくソリューションを提案する。
提案手法は,ユーザ数に応じて効果的に拡張可能であり,長期のメモリセルを再トレーニングを必要とせずに動作させることができる。
その結果,パイロット汚染による不完全なチャネル状態情報が存在する場合でも,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-17T15:12:54Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Deep Learning-Based Approach for User Activity Detection with Grant-Free Random Access in Cell-Free Massive MIMO [0.8520624117635328]
本稿では,アクティビティ検出問題への教師付き機械学習モデルの適用について検討する。
本研究では, セルフリー・マス・マルチ入力多重出力(CF-mMIMO)ネットワークにおいて, ユーザアクティビティ検出に特化して設計されたデータ駆動アルゴリズムを提案する。
このアルゴリズムは99%の精度を達成し、実世界のアプリケーションで有効性を確認します。
論文 参考訳(メタデータ) (2024-06-11T11:08:33Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Balancing the trade-off between cost and reliability for wireless sensor
networks: a multi-objective optimized deployment method [4.031433260365659]
実用無線センサネットワーク(WSN)の最適配置法を提案する。
我々は競合多目的最適化アルゴリズム(CMOMPA)として知られる新しい多目的最適化アルゴリズムを開発した。
その結果、最適化されたデプロイメントは、デプロイメントコスト、感度信頼性、ネットワーク信頼性のトレードオフのバランスをとることができることがわかった。
論文 参考訳(メタデータ) (2022-07-19T05:53:55Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
再構成可能なインテリジェントサーフェス (STAR-RIS) アシストネットワークを同時に送信および反射するカバレッジとキャパシティ最適化のための新しいモデルを提案する。
損失関数ベースの更新戦略はコアポイントであり、各更新時にmin-normソルバによってカバレッジとキャパシティの両方の損失関数の重みを計算することができる。
解析結果から,提案手法は固定重みに基づくMOアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-04-13T13:52:22Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
本稿では,無線モバイルユーザに対して,超信頼性でエネルギー効率のよいバーチャルリアリティ(VR)体験を提供するという課題について検討する。
モバイルユーザへの信頼性の高い超高精細ビデオフレーム配信を実現するために,コーディネートマルチポイント(CoMP)伝送技術とミリ波(mmWave)通信を利用する。
論文 参考訳(メタデータ) (2021-06-03T08:35:10Z) - Multiple Access in Dynamic Cell-Free Networks: Outage Performance and
Deep Reinforcement Learning-Based Design [24.632250413917816]
将来のセルフリー(またはセルレス)無線ネットワークでは、地理的領域の多数のデバイスが同時に多数の分散アクセスポイント(AP)によって提供される。
我々は,多数のデバイスやAPが存在する場合に,ユーザの信号の共同処理の複雑さを低減するために,新しい動的セルフリーネットワークアーキテクチャを提案する。
システム設定では, DDPG-DDQN方式は, 網羅的な検索ベース設計により, 達成可能なレートの約78%を達成できることがわかった。
論文 参考訳(メタデータ) (2020-01-29T03:00:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。