論文の概要: A Deep Learning Approach for User-Centric Clustering in Cell-Free Massive MIMO Systems
- arxiv url: http://arxiv.org/abs/2410.02775v1
- Date: Tue, 17 Sep 2024 15:12:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:54:19.837680
- Title: A Deep Learning Approach for User-Centric Clustering in Cell-Free Massive MIMO Systems
- Title(参考訳): セルフリーMIMOシステムにおけるユーザ中心クラスタリングのための深層学習手法
- Authors: Giovanni Di Gennaro, Amedeo Buonanno, Gianmarco Romano, Stefano Buzzi, Francesco A. N Palmieri,
- Abstract要約: ユーザクラスタリング問題を解決するために,ディープラーニングに基づくソリューションを提案する。
提案手法は,ユーザ数に応じて効果的に拡張可能であり,長期のメモリセルを再トレーニングを必要とせずに動作させることができる。
その結果,パイロット汚染による不完全なチャネル状態情報が存在する場合でも,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 7.202538088166535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Contrary to conventional massive MIMO cellular configurations plagued by inter-cell interference, cell-free massive MIMO systems distribute network resources across the coverage area, enabling users to connect with multiple access points (APs) and boosting both system capacity and fairness across user. In such systems, one critical functionality is the association between APs and users: determining the optimal association is indeed a combinatorial problem of prohibitive complexity. In this paper, a solution based on deep learning is thus proposed to solve the user clustering problem aimed at maximizing the sum spectral efficiency while controlling the number of active connections. The proposed solution can scale effectively with the number of users, leveraging long short-term memory cells to operate without the need for retraining. Numerical results show the effectiveness of the proposed solution, even in the presence of imperfect channel state information due to pilot contamination.
- Abstract(参考訳): セル間干渉に悩まされる従来のMIMOセル構成とは対照的に、セルフリーのMIMOシステムはネットワークリソースをカバー範囲全体に分散し、複数のアクセスポイント(AP)と接続し、システムキャパシティとユーザ間の公正性を高めることができる。
このようなシステムでは、APとユーザの間の関連が重要な機能である: 最適な関連を決定することは、確かに禁制的な複雑さの組合せ問題である。
そこで本研究では,アクティブ接続数を制御しながら,スペクトルの総和効率を最大化することを目的としたユーザクラスタリング問題を解決するために,ディープラーニングに基づくソリューションを提案する。
提案手法は,ユーザ数に応じて効果的に拡張可能であり,長期のメモリセルを再トレーニングを必要とせずに動作させることができる。
その結果,パイロット汚染による不完全なチャネル状態情報が存在する場合でも,提案手法の有効性が示された。
関連論文リスト
- Deep Learning-Based Approach for User Activity Detection with Grant-Free Random Access in Cell-Free Massive MIMO [0.8520624117635328]
本稿では,アクティビティ検出問題への教師付き機械学習モデルの適用について検討する。
本研究では, セルフリー・マス・マルチ入力多重出力(CF-mMIMO)ネットワークにおいて, ユーザアクティビティ検出に特化して設計されたデータ駆動アルゴリズムを提案する。
このアルゴリズムは99%の精度を達成し、実世界のアプリケーションで有効性を確認します。
論文 参考訳(メタデータ) (2024-06-11T11:08:33Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
本稿では,アグリゲーションエラーを最小限に抑え,選択したデバイス数を最大化する目的で,共同装置の選択とアグリゲーションビームフォーミング設計について検討する。
コスト効率のよい方法でこの問題に取り組むために,ランダムな集合ビームフォーミング方式を提案する。
また, 得られた集計誤差と, デバイス数が大きい場合に選択したデバイス数についても解析を行った。
論文 参考訳(メタデータ) (2024-02-20T23:59:45Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
複数の基地局とセル間干渉を持つ無線システムにおける連合学習モデルを考える。
本稿では,学習過程の収束挙動を,その最適性ギャップの上限を導出することによって示す。
提案するスケジューラは,ランダムなスケジューラと比較して予測平均精度を向上する。
論文 参考訳(メタデータ) (2022-08-25T03:37:11Z) - Over-the-Air Multi-Task Federated Learning Over MIMO Interference
Channel [17.362158131772127]
We study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel。
そこで本研究では,各デバイスに局所勾配をアライメントするモデルアグリゲーション手法を提案する。
新たなモデルアグリゲーション手法を用いることで,デバイス選択はもはや我々の計画に必須ではないことを示す。
論文 参考訳(メタデータ) (2021-12-27T10:42:04Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network [0.0]
近接最適解は、アクセスポイント(AP)とネットワークコントローラ(NC)の間で大量の信号交換を必要とする。
本稿では,AP と NC 間の通信オーバーヘッドをゼロあるいは限定して協調ハイブリッドビームフォーミングを行うことができる2つの非教師なしディープニューラルネットワーク(DNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-06-30T16:42:32Z) - Joint User Pairing and Association for Multicell NOMA: A Pointer
Network-based Approach [22.501227501613204]
ユーザ機器(UE)を複数の基地局を備えたマルチセルネットワークに配置するシナリオを考察する。
我々は、ポインタネットワーク(PtrNet)と呼ばれる新しいディープラーニングアーキテクチャを用いて、統合ユーザペアリングとアソシエーション問題を最適化問題として定式化する。
提案手法は,アグリゲーションデータ率の観点から,ほぼ最適性能を実現する。
論文 参考訳(メタデータ) (2020-04-15T23:42:19Z) - Multiple Access in Dynamic Cell-Free Networks: Outage Performance and
Deep Reinforcement Learning-Based Design [24.632250413917816]
将来のセルフリー(またはセルレス)無線ネットワークでは、地理的領域の多数のデバイスが同時に多数の分散アクセスポイント(AP)によって提供される。
我々は,多数のデバイスやAPが存在する場合に,ユーザの信号の共同処理の複雑さを低減するために,新しい動的セルフリーネットワークアーキテクチャを提案する。
システム設定では, DDPG-DDQN方式は, 網羅的な検索ベース設計により, 達成可能なレートの約78%を達成できることがわかった。
論文 参考訳(メタデータ) (2020-01-29T03:00:22Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。