Manipulating topological charges via engineering zeros of wave functions
- URL: http://arxiv.org/abs/2412.07101v1
- Date: Tue, 10 Dec 2024 01:39:32 GMT
- Title: Manipulating topological charges via engineering zeros of wave functions
- Authors: Xiao-Lin Li, Ming Gong, Yu-Hao Wang, Li-Chen Zhao,
- Abstract summary: Topological charges are typically manipulated by managing their energy bands in quantum systems.
We propose a new approach to manipulate the topological charges of systems by engineering density zeros of localized wave excitations in them.
- Score: 26.574816210968905
- License:
- Abstract: Topological charges are typically manipulated by managing their energy bands in quantum systems. In this work, we propose a new approach to manipulate the topological charges of systems by engineering density zeros of localized wave excitations in them. We demonstrate via numerical simulation and analytical analysis that the winding number of a toroidal Bose condensate can be well manipulated by engineering the relative velocities between the dark solitons and their backgrounds. The crossing of relative velocities through zero makes a change in winding number by inducing density zeros during acceleration, with the direction of crossing determining whether charge increases or decreases. Possibilities of observing such winding number manipulation are discussed for current experimental settings. This idea may also be to higher dimensions. These results will inspire new pathways in designing topological materials using quantum simulation platforms.
Related papers
- Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices [0.0]
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
arXiv Detail & Related papers (2024-03-18T17:08:04Z) - Emergent strong zero mode through local Floquet engineering [0.0]
Floquet prethermalization and dynamical freezing of certain observables are realized by controlling the drive frequency.
These dynamical regimes can be leveraged to construct quantum memories and have potential applications in quantum information processing.
arXiv Detail & Related papers (2023-06-02T18:00:03Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Witness of topological phase transition and Weyl points in an open
topological system [0.2580765958706854]
Recently, the tunable Weyl-semimetal bands and the associate topological phase oscillation transition have been successfully simulated in superconducting quantum circuits.
We focus on the steady state and decoherence process by taking the reservoir into consideration via quantum master equation.
arXiv Detail & Related papers (2020-07-27T00:50:28Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.