Approximate quantum circuit compilation for proton-transfer kinetics on quantum processors
- URL: http://arxiv.org/abs/2507.08996v1
- Date: Fri, 11 Jul 2025 19:56:43 GMT
- Title: Approximate quantum circuit compilation for proton-transfer kinetics on quantum processors
- Authors: Arseny Kovyrshin, Dilhan Manawadu, Edoardo Altamura, George Pennington, Benjamin Jaderberg, Sebastian Brandhofer, Anton Nykänen, Aaron Miller, Walter Talarico, Stefan Knecht, Fabijan Pavošević, Alberto Baiardi, Francesco Tacchino, Ivano Tavernelli, Stefano Mensa, Jason Crain, Lars Tornberg, Anders Broo,
- Abstract summary: We develop and demonstrate quantum computing algorithms based on the Nuclear-Electronic Orbital framework.<n>We assess the potential of current quantum devices for simulating proton transfer kinetics with high accuracy.
- Score: 0.7147139889072891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proton transfer reactions are fundamental to many chemical and biological systems, where quantum effects such as tunneling, delocalization, and zero-point motion play key kinetic control roles. However, classical methods capable of accurately capturing these phenomena scale prohibitively with system size. Here, we develop and demonstrate quantum computing algorithms based on the Nuclear-Electronic Orbital framework, treating the transferring proton quantum mechanically. We assess the potential of current quantum devices for simulating proton transfer kinetics with high accuracy. We first construct a deep initial ans\"atze within a truncated orbital space by employing the frozen natural orbital approximation. Then, to balance circuit depth against state fidelity, we implement an adaptive form of approximate quantum compiling. Using resulting circuits at varying compression levels transpiled for the ibm_fez device, we compute barrier heights and delocalised proton densities along the proton transfer pathway using a realistic hardware noise model. We find that, although current quantum hardware introduces significant noise relative to the demanding energy tolerances involved, our approach allows substantial circuit simplification while maintaining energy barrier estimates within 13% of the reference value. Despite present hardware limitations, these results offer a practical means of approximating key circuit segments in near-term devices and early fault-tolerant quantum computing systems.
Related papers
- Analog Quantum Phase Estimation with Single-Mode Readout [0.46040036610482665]
Eigenvalue estimation is a central problem for demonstrating quantum advantage.<n>We present an analog quantum phase estimation protocol that extracts the eigenenergies of a target Hamiltonian.<n>Our results provide a resource-efficient and scalable framework for implementing quantum phase estimation in near-term quantum platforms.
arXiv Detail & Related papers (2025-06-18T17:50:42Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Sequential quantum simulation of spin chains with a single circuit QED
device [5.841833052422423]
Quantum simulation of many-body systems in materials science and chemistry are promising application areas for quantum computers.
We show how a single-circuit quantum electrodynamics device can be used to simulate the ground state of a highly-entangled quantum many-body spin chain.
We demonstrate that the large state space of the cavity can be used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum processors for materials simulation.
arXiv Detail & Related papers (2023-08-30T18:00:03Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.