Predictable Emergent Abilities of LLMs: Proxy Tasks Are All You Need
- URL: http://arxiv.org/abs/2412.07111v1
- Date: Tue, 10 Dec 2024 01:56:30 GMT
- Title: Predictable Emergent Abilities of LLMs: Proxy Tasks Are All You Need
- Authors: Bo-Wen Zhang, Yan Yan, Boxiang Yang, Yifei Xue, Guang Liu,
- Abstract summary: We propose a method that predicts emergent abilities by leveraging proxy tasks.
In a case study on tool utilization capabilities, our method demonstrated a strong correlation between predicted and actual performance.
- Score: 9.660067334665792
- License:
- Abstract: While scaling laws optimize training configurations for large language models (LLMs) through experiments on smaller or early-stage models, they fail to predict emergent abilities due to the absence of such capabilities in these models. To address this, we propose a method that predicts emergent abilities by leveraging proxy tasks. We begin by establishing relevance metrics between the target task and candidate tasks based on performance differences across multiple models. These candidate tasks are then validated for robustness with small model ensembles, leading to the selection of the most appropriate proxy tasks. The predicted performance on the target task is then derived by integrating the evaluation results of these proxies. In a case study on tool utilization capabilities, our method demonstrated a strong correlation between predicted and actual performance, confirming its effectiveness.
Related papers
- Statistical Uncertainty Quantification for Aggregate Performance Metrics in Machine Learning Benchmarks [0.0]
We show how statistical methodology can be used for quantifying uncertainty in metrics that have been aggregated across multiple tasks.
These techniques reveal insights such as the dominance of a specific model for certain types of tasks despite an overall poor performance.
arXiv Detail & Related papers (2025-01-08T02:17:34Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models [9.710960283117771]
ProxyLM is a task- and language-agnostic framework designed to predict the performance of LMs using proxy models.
ProxyLM significantly reduces computational overhead in task evaluations, achieving up to a 37.08x speedup over traditional methods.
Our results demonstrate that ProxyLM not only adapts well to previously unseen languages in pre-trained LMs, but also generalizes effectively across different datasets.
arXiv Detail & Related papers (2024-06-13T17:15:33Z) - Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
Estimating the transferability of publicly available pretrained models to a target task has assumed an important place for transfer learning tasks.
We propose a novel Optimal tranSport-based suBmOdular tRaNsferability metric (OSBORN) to estimate the transferability of an ensemble of models to a downstream task.
arXiv Detail & Related papers (2023-09-05T17:57:31Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
We show that our method achieves state-of-the-art results in four domains from the literature.
Our approach outperforms the best existing method by nearly 200% when the localness assumption is broken.
arXiv Detail & Related papers (2023-05-26T11:17:45Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks.
In this work we overcome this issue by inferring a conditioning function, mapping the tasks' side information into a representation tailored to the task at hand.
We propose a meta-algorithm capable of leveraging this advantage in practice.
arXiv Detail & Related papers (2021-03-30T12:02:14Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.