Robust Feature Engineering Techniques for Designing Efficient Motor Imagery-Based BCI-Systems
- URL: http://arxiv.org/abs/2412.07175v2
- Date: Thu, 20 Feb 2025 10:59:40 GMT
- Title: Robust Feature Engineering Techniques for Designing Efficient Motor Imagery-Based BCI-Systems
- Authors: Syed Saim Gardezi, Soyiba Jawed, Mahnoor Khan, Muneeba Bukhari, Rizwan Ahmed Khan,
- Abstract summary: This research work provides an in-depth analysis of the MI Limb EEG dataset.
It will help in designing and developing simple, cost-effective and reliable BCI systems for neuro-rehabilitation.
- Score: 0.0
- License:
- Abstract: A multitude of individuals across the globe grapple with motor disabilities. Neural prosthetics utilizing Brain-Computer Interface (BCI) technology exhibit promise for improving motor rehabilitation outcomes. The intricate nature of EEG data poses a significant hurdle for current BCI systems. Recently, a qualitative repository of EEG signals tied to both upper and lower limb execution of motor and motor imagery tasks has been unveiled. Despite this, the productivity of the Machine Learning (ML) Models that were trained on this dataset was alarmingly deficient, and the evaluation framework seemed insufficient. To enhance outcomes, robust feature engineering (signal processing) methodologies are implemented. A collection of time domain, frequency domain, and wavelet-derived features was obtained from 16-channel EEG signals, and the Maximum Relevance Minimum Redundancy (MRMR) approach was employed to identify the four most significant features. For classification K Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Na\"ive Bayes (NB) models were implemented with these selected features, evaluating their effectiveness through metrics such as testing accuracy, precision, recall, and F1 Score. By leveraging SVM with a Gaussian Kernel, a remarkable maximum testing accuracy of 92.50% for motor activities and 95.48% for imagery activities is achieved. These results are notably more dependable and gratifying compared to the previous study, where the peak accuracy was recorded at 74.36%. This research work provides an in-depth analysis of the MI Limb EEG dataset and it will help in designing and developing simple, cost-effective and reliable BCI systems for neuro-rehabilitation.
Related papers
- An AI-Driven Live Systematic Reviews in the Brain-Heart Interconnectome: Minimizing Research Waste and Advancing Evidence Synthesis [29.81784450632149]
We develop an AI-driven system to enhance systematic reviews in the Brain-Heart Interconnectome (BHI) domain.
The system integrates automated detection of Population, Intervention, Comparator, Outcome, and Study design (PICOS), semantic search using vector embeddings, graph-based querying, and topic modeling.
The system provides real-time updates, reducing research waste through a living database and offering an interactive interface with dashboards and conversational AI.
arXiv Detail & Related papers (2025-01-25T03:51:07Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
This paper proposed a model that combined a three-dimensional convolutional neural network (CNN) with a long short-term memory (LSTM) network to classify motor imagery (MI) signals.
Experimental results showed that this model achieved a classification accuracy of 92.7% and an F1-score of 0.91 on the public dataset BCI Competition IV dataset 2a.
The model greatly improved the classification accuracy of users' motor imagery intentions, giving brain-computer interfaces better application prospects in emerging fields such as autonomous vehicles and medical rehabilitation.
arXiv Detail & Related papers (2023-12-20T03:38:24Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Classification of Upper Arm Movements from EEG signals using Machine
Learning with ICA Analysis [0.0]
This paper proposes a unique algorithm for classifying left/right-hand movements by utilizing Multi-layer Perceptron Neural Network.
The intervention of unwanted signals contaminates the EEG signals which influence the performance of the algorithm.
arXiv Detail & Related papers (2021-07-18T18:56:28Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
We introduce Conditional Independent Components Analysis (Conditional ICA): a fast functional Magnetic Resonance Imaging (fMRI) data augmentation technique.
We show that Conditional ICA is successful at synthesizing data indistinguishable from observations, and that it yields gains in classification accuracy in brain decoding problems.
arXiv Detail & Related papers (2021-07-11T22:36:14Z) - Neonatal seizure detection from raw multi-channel EEG using a fully
convolutional architecture [1.8352113484137622]
This architecture is designed to detect seizure events from raw electroencephalogram (EEG) signals as opposed to the state-of-the-art hand engineered feature-based representation employed in traditional machine learning based solutions.
The proposed architecture opens new avenues for the application of deep learning to neonatal EEG, where the performance becomes a function of the amount of training data with less dependency on the availability of precise clinical labels.
arXiv Detail & Related papers (2021-05-28T14:08:36Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
This paper presents a novel deep learning approach designed towards remarkably accurate and responsive motor imagery (MI) recognition based on scalp EEG.
BiLSTM with the Attention mechanism manages to derive relevant features from raw EEG signals.
The 0.4-second detection framework has shown effective and efficient prediction based on individual and group-wise training, with 98.81% and 94.64% accuracy, respectively.
arXiv Detail & Related papers (2020-05-02T10:03:40Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals have received a lot of attention.
Motor imagery (MI) data can be used to aid rehabilitation as well as in autonomous driving scenarios.
classification of MI signals is vital for EEG-based BCI systems.
arXiv Detail & Related papers (2020-03-03T02:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.