Effective Reward Specification in Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2412.07177v1
- Date: Tue, 10 Dec 2024 04:22:11 GMT
- Title: Effective Reward Specification in Deep Reinforcement Learning
- Authors: Julien Roy,
- Abstract summary: Improper reward specification can result in misaligned agent behavior and inefficient learning.
In this thesis, we survey the literature on effective reward specification strategies.
We propose original contributions addressing the issue of sample efficiency and alignment in deep reinforcement learning.
- Score: 2.28438857884398
- License:
- Abstract: In the last decade, Deep Reinforcement Learning has evolved into a powerful tool for complex sequential decision-making problems. It combines deep learning's proficiency in processing rich input signals with reinforcement learning's adaptability across diverse control tasks. At its core, an RL agent seeks to maximize its cumulative reward, enabling AI algorithms to uncover novel solutions previously unknown to experts. However, this focus on reward maximization also introduces a significant difficulty: improper reward specification can result in unexpected, misaligned agent behavior and inefficient learning. The complexity of accurately specifying the reward function is further amplified by the sequential nature of the task, the sparsity of learning signals, and the multifaceted aspects of the desired behavior. In this thesis, we survey the literature on effective reward specification strategies, identify core challenges relating to each of these approaches, and propose original contributions addressing the issue of sample efficiency and alignment in deep reinforcement learning. Reward specification represents one of the most challenging aspects of applying reinforcement learning in real-world domains. Our work underscores the absence of a universal solution to this complex and nuanced challenge; solving it requires selecting the most appropriate tools for the specific requirements of each unique application.
Related papers
- BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Comprehensive Overview of Reward Engineering and Shaping in Advancing Reinforcement Learning Applications [0.0]
This paper emphasizes the importance of reward engineering and reward shaping in enhancing the efficiency and effectiveness of reinforcement learning algorithms.
Despite significant advancements in reinforcement learning, several limitations persist.
One key challenge is the sparse and delayed nature of rewards in many real-world scenarios.
The complexity of accurately modeling real-world environments and the computational demands of reinforcement learning algorithms remain substantial obstacles.
arXiv Detail & Related papers (2024-07-22T09:28:12Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.
Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Behavior Alignment via Reward Function Optimization [23.92721220310242]
We introduce a new framework that integrates auxiliary rewards reflecting a designer's domain knowledge with the environment's primary rewards.
We evaluate our method's efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional control challenges.
arXiv Detail & Related papers (2023-10-29T13:45:07Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z) - Learning Options via Compression [62.55893046218824]
We propose a new objective that combines the maximum likelihood objective with a penalty on the description length of the skills.
Our objective learns skills that solve downstream tasks in fewer samples compared to skills learned from only maximizing likelihood.
arXiv Detail & Related papers (2022-12-08T22:34:59Z) - Unpacking Reward Shaping: Understanding the Benefits of Reward
Engineering on Sample Complexity [114.88145406445483]
Reinforcement learning provides an automated framework for learning behaviors from high-level reward specifications.
In practice the choice of reward function can be crucial for good results.
arXiv Detail & Related papers (2022-10-18T04:21:25Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of, in addition to a main task, multiple auxiliary tasks.
This affords many benefits: learning efficiency is improved for main tasks with challenging bottleneck transitions, expert data becomes reusable between tasks, and transfer learning through the reuse of learned auxiliary task models becomes possible.
arXiv Detail & Related papers (2021-12-16T14:58:08Z) - Reinforcement Learning Agent Training with Goals for Real World Tasks [3.747737951407512]
Reinforcement Learning (RL) is a promising approach for solving various control, optimization, and sequential decision making tasks.
We propose a specification language (Inkling Goal Specification) for complex control and optimization tasks.
We include a set of experiments showing that the proposed method provides great ease of use to specify a wide range of real world tasks.
arXiv Detail & Related papers (2021-07-21T23:21:16Z) - Outcome-Driven Reinforcement Learning via Variational Inference [95.82770132618862]
We discuss a new perspective on reinforcement learning, recasting it as the problem of inferring actions that achieve desired outcomes, rather than a problem of maximizing rewards.
To solve the resulting outcome-directed inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function.
We empirically demonstrate that this method eliminates the need to design reward functions and leads to effective goal-directed behaviors.
arXiv Detail & Related papers (2021-04-20T18:16:21Z) - Efficient Reinforcement Learning in Resource Allocation Problems Through
Permutation Invariant Multi-task Learning [6.247939901619901]
We show that in certain settings, the available data can be dramatically increased through a form of multi-task learning.
We provide a theoretical performance bound for the gain in sample efficiency under this setting.
This motivates a new approach to multi-task learning, which involves the design of an appropriate neural network architecture and a prioritized task-sampling strategy.
arXiv Detail & Related papers (2021-02-18T14:13:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.