A Review on the Applications of Transformer-based language models for Nucleotide Sequence Analysis
- URL: http://arxiv.org/abs/2412.07201v1
- Date: Tue, 10 Dec 2024 05:33:09 GMT
- Title: A Review on the Applications of Transformer-based language models for Nucleotide Sequence Analysis
- Authors: Nimisha Ghosh, Daniele Santoni, Indrajit Saha, Giovanni Felici,
- Abstract summary: This paper introduces the major developments of Transformer-based models in the recent past in the context of nucleotide sequences.
We believe this review will help the scientific community in understanding the various applications of Transformer-based language models to nucleotide sequences.
- Score: 0.8049701904919515
- License:
- Abstract: In recent times, Transformer-based language models are making quite an impact in the field of natural language processing. As relevant parallels can be drawn between biological sequences and natural languages, the models used in NLP can be easily extended and adapted for various applications in bioinformatics. In this regard, this paper introduces the major developments of Transformer-based models in the recent past in the context of nucleotide sequences. We have reviewed and analysed a large number of application-based papers on this subject, giving evidence of the main characterizing features and to different approaches that may be adopted to customize such powerful computational machines. We have also provided a structured description of the functioning of Transformers, that may enable even first time users to grab the essence of such complex architectures. We believe this review will help the scientific community in understanding the various applications of Transformer-based language models to nucleotide sequences. This work will motivate the readers to build on these methodologies to tackle also various other problems in the field of bioinformatics.
Related papers
- Hidden Holes: topological aspects of language models [1.1172147007388977]
We study the evolution of topological structure in GPT based large language models across depth and time during training.
We show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data.
arXiv Detail & Related papers (2024-06-09T14:25:09Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - A Survey on Large Language Models from Concept to Implementation [4.219910716090213]
Recent advancements in Large Language Models (LLMs) have broadened the scope of natural language processing (NLP) applications.
This paper investigates the multifaceted applications of these models, with an emphasis on the GPT series.
This exploration focuses on the transformative impact of artificial intelligence (AI) driven tools in revolutionizing traditional tasks like coding and problem-solving.
arXiv Detail & Related papers (2024-03-27T19:35:41Z) - Advancing bioinformatics with large language models: components, applications and perspectives [12.728981464533918]
Large language models (LLMs) are a class of artificial intelligence models based on deep learning.
We will provide a comprehensive overview of the essential components of large language models (LLMs) in bioinformatics.
Key aspects covered include tokenization methods for diverse data types, the architecture of transformer models, and the core attention mechanism.
arXiv Detail & Related papers (2024-01-08T17:26:59Z) - Anatomy of Neural Language Models [0.0]
Transformer-based Language Models (LMs) have led to new state-of-the-art results in a wide spectrum of applications.
Transformers pretrained on language-modeling-like tasks have been widely adopted in computer vision and time series applications.
arXiv Detail & Related papers (2024-01-08T10:27:25Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
arXiv Detail & Related papers (2023-06-11T23:13:51Z) - Structural Biases for Improving Transformers on Translation into
Morphologically Rich Languages [120.74406230847904]
TP-Transformer augments the traditional Transformer architecture to include an additional component to represent structure.
The second method imbues structure at the data level by segmenting the data with morphological tokenization.
We find that each of these two approaches allows the network to achieve better performance, but this improvement is dependent on the size of the dataset.
arXiv Detail & Related papers (2022-08-11T22:42:24Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
This work proposes the first to our knowledge systematic study of formality detection methods based on statistical, neural-based, and Transformer-based machine learning methods.
We conducted three types of experiments -- monolingual, multilingual, and cross-lingual.
The study shows the overcome of Char BiLSTM model over Transformer-based ones for the monolingual and multilingual formality classification task.
arXiv Detail & Related papers (2022-04-19T16:23:07Z) - Do Transformers Encode a Foundational Ontology? Probing Abstract Classes
in Natural Language [2.363388546004777]
We present a systematic Foundational Ontology probing methodology to investigate whether Transformers-based models encode abstract semantic information.
We show that Transformer-based models incidentally encode information related to Foundational Ontologies during the pre-training pro-cess.
arXiv Detail & Related papers (2022-01-25T12:11:46Z) - Thinking Like Transformers [64.96770952820691]
We propose a computational model for the transformer-encoder in the form of a programming language.
We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer.
We provide RASP programs for histograms, sorting, and Dyck-languages.
arXiv Detail & Related papers (2021-06-13T13:04:46Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
The Software Naturalness hypothesis argues that programming languages can be understood through the same techniques used in natural language processing.
We explore this hypothesis through the use of a pre-trained transformer-based language model to perform code analysis tasks.
arXiv Detail & Related papers (2020-06-22T21:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.