Learnable Sparse Customization in Heterogeneous Edge Computing
- URL: http://arxiv.org/abs/2412.07216v2
- Date: Wed, 11 Dec 2024 06:15:45 GMT
- Title: Learnable Sparse Customization in Heterogeneous Edge Computing
- Authors: Jingjing Xue, Sheng Sun, Min Liu, Yuwei Wang, Zhuotao Liu, Jingyuan Wang,
- Abstract summary: We propose Learnable Personalized Sparsification for heterogeneous Federated learning (FedLPS)
FedLPS learns the importance of model units on local data representation and derives an importance-based sparse pattern with minimals to accurately extract personalized data features.
Experiments show that FedLPS outperforms status quo approaches in accuracy and training costs.
- Score: 27.201987866208484
- License:
- Abstract: To effectively manage and utilize massive distributed data at the network edge, Federated Learning (FL) has emerged as a promising edge computing paradigm across data silos. However, FL still faces two challenges: system heterogeneity (i.e., the diversity of hardware resources across edge devices) and statistical heterogeneity (i.e., non-IID data). Although sparsification can extract diverse submodels for diverse clients, most sparse FL works either simply assign submodels with artificially-given rigid rules or prune partial parameters using heuristic strategies, resulting in inflexible sparsification and poor performance. In this work, we propose Learnable Personalized Sparsification for heterogeneous Federated learning (FedLPS), which achieves the learnable customization of heterogeneous sparse models with importance-associated patterns and adaptive ratios to simultaneously tackle system and statistical heterogeneity. Specifically, FedLPS learns the importance of model units on local data representation and further derives an importance-based sparse pattern with minimal heuristics to accurately extract personalized data features in non-IID settings. Furthermore, Prompt Upper Confidence Bound Variance (P-UCBV) is designed to adaptively determine sparse ratios by learning the superimposed effect of diverse device capabilities and non-IID data, aiming at resource self-adaptation with promising accuracy. Extensive experiments show that FedLPS outperforms status quo approaches in accuracy and training costs, which improves accuracy by 1.28%-59.34% while reducing running time by more than 68.80%.
Related papers
- Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data.
Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing.
This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models.
arXiv Detail & Related papers (2024-11-10T04:03:09Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local
Parameter Sharing [14.938531944702193]
We propose Federated Learning with Local Heterogeneous Sharing (FedLPS)
FedLPS uses transfer learning to facilitate the deployment of multiple tasks on a single device by dividing the local model into a shareable encoder and task-specific encoders.
FedLPS significantly outperforms the state-of-the-art (SOTA) FL frameworks by up to 4.88% and reduces the computational resource consumption by 21.3%.
arXiv Detail & Related papers (2024-02-13T16:30:30Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Auxo: Efficient Federated Learning via Scalable Client Clustering [22.323057948281644]
Federated learning (FL) enables edge devices to collaboratively train ML models without revealing their raw data to a logically centralized server.
We propose Auxo to gradually identify clients with statistically similar data distributions (cohorts) in large-scale, low-availability, and resource-constrained FL populations.
We show Auxo boosts various existing FL solutions in terms of final accuracy (2.1% - 8.2%), convergence time (up to 2.2x), and model bias (4.8% - 53.8%)
arXiv Detail & Related papers (2022-10-29T17:36:51Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices.
In this paper, we introduce a new FLAD FedADMM based protocol.
We show that FedADMM consistently outperforms all baseline methods in terms of communication efficiency.
arXiv Detail & Related papers (2022-04-07T15:58:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Genetic CFL: Optimization of Hyper-Parameters in Clustered Federated
Learning [4.710427287359642]
Federated learning (FL) is a distributed model for deep learning that integrates client-server architecture, edge computing, and real-time intelligence.
FL has the capability of revolutionizing machine learning (ML) but lacks in the practicality of implementation due to technological limitations, communication overhead, non-IID (independent and identically distributed) data, and privacy concerns.
We propose a novel hybrid algorithm, namely genetic clustered FL (Genetic CFL), that clusters edge devices based on the training hyper- parameters and genetically modifies the parameters cluster-wise.
arXiv Detail & Related papers (2021-07-15T10:16:05Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.