T-TIME: Test-Time Information Maximization Ensemble for Plug-and-Play BCIs
- URL: http://arxiv.org/abs/2412.07228v1
- Date: Tue, 10 Dec 2024 06:32:17 GMT
- Title: T-TIME: Test-Time Information Maximization Ensemble for Plug-and-Play BCIs
- Authors: Siyang Li, Ziwei Wang, Hanbin Luo, Lieyun Ding, Dongrui Wu,
- Abstract summary: An EEG-based brain-computer interface (BCI) enables direct communication between the human brain and a computer.
Due to individual differences and non-stationarity of EEG signals, such BCIs usually require a subject-specific calibration session before each use.
This paper proposes Test-Time Information Maximization Ensemble (T-TIME) to accommodate the most challenging online TL scenario.
- Score: 18.380128552474854
- License:
- Abstract: Objective: An electroencephalogram (EEG)-based brain-computer interface (BCI) enables direct communication between the human brain and a computer. Due to individual differences and non-stationarity of EEG signals, such BCIs usually require a subject-specific calibration session before each use, which is time-consuming and user-unfriendly. Transfer learning (TL) has been proposed to shorten or eliminate this calibration, but existing TL approaches mainly consider offline settings, where all unlabeled EEG trials from the new user are available. Methods: This paper proposes Test-Time Information Maximization Ensemble (T-TIME) to accommodate the most challenging online TL scenario, where unlabeled EEG data from the new user arrive in a stream, and immediate classification is performed. T-TIME initializes multiple classifiers from the aligned source data. When an unlabeled test EEG trial arrives, T-TIME first predicts its labels using ensemble learning, and then updates each classifier by conditional entropy minimization and adaptive marginal distribution regularization. Our code is publicized. Results: Extensive experiments on three public motor imagery based BCI datasets demonstrated that T-TIME outperformed about 20 classical and state-of-the-art TL approaches. Significance: To our knowledge, this is the first work on test time adaptation for calibration-free EEG-based BCIs, making plug-and-play BCIs possible.
Related papers
- Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces [18.870033864947377]
Transfer learning (TL) has been extensively used to expedite the calibration of EEG-based brain-computer interfaces.
Eclectic alignment (EA) was proposed in 2020 to address this challenge.
This paper revisits the EA, introducing its procedure and correct usage, and pointing out potential new research directions.
arXiv Detail & Related papers (2025-02-13T11:43:43Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
We find that two unfavorable defects are concealed in the prevalent adaptation methodologies like test-time batch normalization (BN) and self-learning.
First, we reveal that the normalization statistics in test-time BN are completely affected by the currently received test samples, resulting in inaccurate estimates.
Second, we show that during test-time adaptation, the parameter update is biased towards some dominant classes.
arXiv Detail & Related papers (2023-01-30T15:54:00Z) - Transfer Learning of an Ensemble of DNNs for SSVEP BCI Spellers without
User-Specific Training [3.6144103736375857]
Current high performing SSVEP BCI spellers require an initial lengthy and tiring user-specific training for each new user for system adaptation.
To ensure practicality, we propose a highly novel target identification method based on an ensemble of deep neural networks (DNNs)
We exploit already-existing literature datasets from participants of previously conducted EEG experiments to train a global target identifier DNN first.
We transfer this ensemble of fine-tuned DNNs to the new user instance, determine the k most representative DNNs according to the participants' statistical similarities to the new user, and predict the target character through a weighted combination of
arXiv Detail & Related papers (2022-09-03T23:24:47Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - Confidence-Aware Subject-to-Subject Transfer Learning for Brain-Computer
Interface [3.2550305883611244]
The inter/intra-subject variability of electroencephalography (EEG) makes the practical use of the brain-computer interface (BCI) difficult.
We propose a BCI framework using only high-confidence subjects for TL training.
In our framework, a deep neural network selects useful subjects for the TL process and excludes noisy subjects, using a co-teaching algorithm based on the small-loss trick.
arXiv Detail & Related papers (2021-12-15T15:23:23Z) - Improving the performance of EEG decoding using anchored-STFT in
conjunction with gradient norm adversarial augmentation [0.22835610890984162]
EEG signals have a low spatial resolution and are often distorted with noise and artifacts.
Deep learning algorithms have proven to be quite efficient in learning hidden, meaningful patterns.
In this study, we proposed a novel input formation (feature extraction) method in conjunction with a novel deep learning based generative model.
arXiv Detail & Related papers (2020-11-30T11:18:06Z) - Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A
Complete Pipeline [54.73337667795997]
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject.
This paper proposes that TL could be considered in all three components (spatial filtering, feature engineering, and classification) of MI-based BCIs.
arXiv Detail & Related papers (2020-07-03T23:44:21Z) - Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of
Progress Made Since 2016 [35.68916211292525]
A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals.
EEG is sensitive to noise/artifact and suffers between-subject/within-subject non-stationarity.
It is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects.
arXiv Detail & Related papers (2020-04-13T16:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.