Label-Confidence-Aware Uncertainty Estimation in Natural Language Generation
- URL: http://arxiv.org/abs/2412.07255v1
- Date: Tue, 10 Dec 2024 07:35:23 GMT
- Title: Label-Confidence-Aware Uncertainty Estimation in Natural Language Generation
- Authors: Qinhong Lin, Linna Zhou, Zhongliang Yang, Yuang Cai,
- Abstract summary: Uncertainty Quantification (UQ) is crucial for ensuring the safety and robustness of AI systems.
We propose a label-confidence-aware (LCA) uncertainty estimation based on Kullback-Leibler divergence bridging between samples and label source.
- Score: 8.635811152610604
- License:
- Abstract: Large Language Models (LLMs) display formidable capabilities in generative tasks but also pose potential risks due to their tendency to generate hallucinatory responses. Uncertainty Quantification (UQ), the evaluation of model output reliability, is crucial for ensuring the safety and robustness of AI systems. Recent studies have concentrated on model uncertainty by analyzing the relationship between output entropy under various sampling conditions and the corresponding labels. However, these methods primarily focus on measuring model entropy with precision to capture response characteristics, often neglecting the uncertainties associated with greedy decoding results-the sources of model labels, which can lead to biased classification outcomes. In this paper, we explore the biases introduced by greedy decoding and propose a label-confidence-aware (LCA) uncertainty estimation based on Kullback-Leibler (KL) divergence bridging between samples and label source, thus enhancing the reliability and stability of uncertainty assessments. Our empirical evaluations across a range of popular LLMs and NLP datasets reveal that different label sources can indeed affect classification, and that our approach can effectively capture differences in sampling results and label sources, demonstrating more effective uncertainty estimation.
Related papers
- Uncertainty Quantification in Stereo Matching [61.73532883992135]
We propose a new framework for stereo matching and its uncertainty quantification.
We adopt Bayes risk as a measure of uncertainty and estimate data and model uncertainty separately.
We apply our uncertainty method to improve prediction accuracy by selecting data points with small uncertainties.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - On Uncertainty Calibration and Selective Generation in Probabilistic
Neural Summarization: A Benchmark Study [14.041071717005362]
Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty.
This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications.
Probabilistic deep learning methods are common solutions to the miscalibration problem, but their relative effectiveness in complex autoregressive summarization tasks are not well-understood.
arXiv Detail & Related papers (2023-04-17T23:06:28Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Exploring Predictive Uncertainty and Calibration in NLP: A Study on the
Impact of Method & Data Scarcity [7.3372471678239215]
We assess the quality of estimates from a wide array of approaches and their dependence on the amount of available data.
We find that while approaches based on pre-trained models and ensembles achieve the best results overall, the quality of uncertainty estimates can surprisingly suffer with more data.
arXiv Detail & Related papers (2022-10-20T15:42:02Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at
Reliable OOD Detection [0.0]
This paper gives a theoretical explanation for said experimental findings and illustrates it on synthetic data.
We prove that such techniques are not able to reliably identify OOD samples in a classification setting.
arXiv Detail & Related papers (2020-12-09T21:35:55Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Uncertainty Quantification in Extreme Learning Machine: Analytical
Developments, Variance Estimates and Confidence Intervals [0.0]
Uncertainty quantification is crucial to assess prediction quality of a machine learning model.
Most methods proposed in the literature make strong assumptions on the data, ignore the randomness of input weights or neglect the bias contribution in confidence interval estimations.
This paper presents novel estimations that overcome these constraints and improve the understanding of ELM variability.
arXiv Detail & Related papers (2020-11-03T13:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.