Deep Lidar-guided Image Deblurring
- URL: http://arxiv.org/abs/2412.07262v1
- Date: Tue, 10 Dec 2024 07:42:46 GMT
- Title: Deep Lidar-guided Image Deblurring
- Authors: Ziyao Yi, Diego Valsesia, Tiziano Bianchi, Enrico Magli,
- Abstract summary: In this paper, we study if the depth information provided by mobile Lidar sensors is useful for the task of image deblurring.
We develop a universal adapter structure that efficiently preprocesses the depth information to modulate image features with depth features.
We demonstrate that utilizing true depth information can significantly boost the effectiveness of deblurring algorithms.
- Score: 22.870337280402346
- License:
- Abstract: The rise of portable Lidar instruments, including their adoption in smartphones, opens the door to novel computational imaging techniques. Being an active sensing instrument, Lidar can provide complementary data to passive optical sensors, particularly in situations like low-light imaging where motion blur can affect photos. In this paper, we study if the depth information provided by mobile Lidar sensors is useful for the task of image deblurring and how to integrate it with a general approach that transforms any state-of-the-art neural deblurring model into a depth-aware one. To achieve this, we developed a universal adapter structure that efficiently preprocesses the depth information to modulate image features with depth features. Additionally, we applied a continual learning strategy to pretrained encoder-decoder models, enabling them to incorporate depth information as an additional input with minimal extra data requirements. We demonstrate that utilizing true depth information can significantly boost the effectiveness of deblurring algorithms, as validated on a dataset with real-world depth data captured by a smartphone Lidar.
Related papers
- Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation [108.04354143020886]
We introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything.
We use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution.
arXiv Detail & Related papers (2024-12-18T16:32:12Z) - ClearDepth: Enhanced Stereo Perception of Transparent Objects for Robotic Manipulation [18.140839442955485]
We develop a vision transformer-based algorithm for stereo depth recovery of transparent objects.
Our method incorporates a parameter-aligned, domain-adaptive, and physically realistic Sim2Real simulation for efficient data generation.
Our experimental results demonstrate the model's exceptional Sim2Real generalizability in real-world scenarios.
arXiv Detail & Related papers (2024-09-13T15:44:38Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Deep Phase Coded Image Prior [34.84063452418995]
Phase-coded imaging is a method to tackle tasks such as passive depth estimation and extended depth of field.
Most of the current deep learning-based methods for depth estimation or all-in-focus imaging require a training dataset with high-quality depth maps.
We propose a new method named "Deep Phase Coded Image Prior" (DPCIP) for jointly recovering the depth map and all-in-focus image.
arXiv Detail & Related papers (2024-04-05T05:58:40Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
flare artifacts can affect image visual quality and downstream computer vision tasks.
Current methods do not consider automatic exposure and tone mapping in image signal processing pipeline.
We propose a solution to improve the performance of lens flare removal by revisiting the ISP and design a more reliable light sources recovery strategy.
arXiv Detail & Related papers (2023-08-31T04:58:17Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Controllable Data Augmentation Through Deep Relighting [75.96144853354362]
We explore how to augment a varied set of image datasets through relighting so as to improve the ability of existing models to be invariant to illumination changes.
We develop a tool, based on an encoder-decoder network, that is able to quickly generate multiple variations of the illumination of various input scenes.
We demonstrate that by training models on datasets that have been augmented with our pipeline, it is possible to achieve higher performance on localization benchmarks.
arXiv Detail & Related papers (2021-10-26T20:02:51Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
We propose a deep learning-based image retrieval approach using homography transformation augmented contrastive learning.
We also propose a training method for the DNNs induced by contrastive learning that does not require any labeling procedure.
arXiv Detail & Related papers (2021-09-21T17:27:07Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
We propose a rendering module to augment the training data by synthesizing images with virtual-depths.
The rendering module takes as input the RGB image and its corresponding sparse depth image, outputs a variety of photo-realistic synthetic images.
Besides, we introduce an auxiliary module to improve the detection model by jointly optimizing it through a depth estimation task.
arXiv Detail & Related papers (2021-07-28T11:00:47Z) - On Deep Learning Techniques to Boost Monocular Depth Estimation for
Autonomous Navigation [1.9007546108571112]
Inferring the depth of images is a fundamental inverse problem within the field of Computer Vision.
We propose a new lightweight and fast supervised CNN architecture combined with novel feature extraction models.
We also introduce an efficient surface normals module, jointly with a simple geometric 2.5D loss function, to solve SIDE problems.
arXiv Detail & Related papers (2020-10-13T18:37:38Z) - Movement Tracking by Optical Flow Assisted Inertial Navigation [18.67291804847956]
We show how a learning-based optical flow model can be combined with conventional inertial navigation.
We show how ideas from probabilistic deep learning can aid the robustness of the measurement updates.
The practical applicability is demonstrated on real-world data acquired by an iPad.
arXiv Detail & Related papers (2020-06-24T16:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.