論文の概要: Compression of Large-Scale 3D Point Clouds Based on Joint Optimization of Point Sampling and Feature Extraction
- arxiv url: http://arxiv.org/abs/2412.07302v1
- Date: Tue, 10 Dec 2024 08:30:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:01.154253
- Title: Compression of Large-Scale 3D Point Clouds Based on Joint Optimization of Point Sampling and Feature Extraction
- Title(参考訳): 点サンプリングと特徴抽出の併用最適化に基づく大規模3次元点雲の圧縮
- Authors: Jae-Young Yim, Jae-Young Sim,
- Abstract要約: LiDARスキャナーによって得られた大規模な3Dポイントクラウド(LS3DPC)は、巨大なストレージスペースと伝送帯域を必要とする。
既存のLS3DPC圧縮法はルールベースの点サンプリングと学習可能な特徴抽出を別々に行う。
本稿では,LS3DPC圧縮のための完全エンドツーエンドのトレーニングフレームワークを提案し,ポイントサンプリングと特徴抽出を協調的に最適化する。
- 参考スコア(独自算出の注目度): 9.94228688034577
- License:
- Abstract: Large-scale 3D point clouds (LS3DPC) obtained by LiDAR scanners require huge storage space and transmission bandwidth due to a large amount of data. The existing methods of LS3DPC compression separately perform rule-based point sampling and learnable feature extraction, and hence achieve limited compression performance. In this paper, we propose a fully end-to-end training framework for LS3DPC compression where the point sampling and the feature extraction are jointly optimized in terms of the rate and distortion losses. To this end, we first make the point sampling module to be trainable such that an optimal position of the downsampled point is estimated via aggregation with learnable weights. We also develop a reliable point reconstruction scheme that adaptively aggregates the expanded candidate points to refine the positions of upsampled points. Experimental results evaluated on the SemanticKITTI and nuScenes datasets show that the proposed method achieves significantly higher compression ratios compared with the existing state-of-the-art methods.
- Abstract(参考訳): LiDARスキャナーによって得られた大規模な3Dポイントクラウド(LS3DPC)は、大量のデータのために巨大なストレージスペースと伝送帯域を必要とする。
既存のLS3DPC圧縮法は、ルールベースの点サンプリングと学習可能な特徴抽出を別々に行い、圧縮性能が制限される。
本稿では,LS3DPC圧縮のための完全エンドツーエンドのトレーニングフレームワークを提案する。
この目的のために,まず,学習可能な重み付きアグリゲーションにより,ダウンサンプリングポイントの最適位置が推定されるように,ポイントサンプリングモジュールをトレーニング可能にする。
また,拡張された候補点を適応的に集約し,アップサンプリングされた点の位置を改良する信頼性の高い点再構成手法を開発した。
SemanticKITTI と nuScenes のデータセットを用いて評価した結果,提案手法は既存の最先端手法と比較して圧縮比が有意に高いことがわかった。
関連論文リスト
- Curvature Informed Furthest Point Sampling [0.0]
ファテスト点サンプリング(FPS)を強化する強化学習に基づくサンプリングアルゴリズムを提案する。
提案手法は,FPS由来のソフトランクと深部ニューラルネットワークによる曲率スコアを組み合わせることで,ポイントをランク付けする。
我々は,各特徴が性能に与える影響について,質的および定量的に考察した総合的アブレーション研究を提供する。
論文 参考訳(メタデータ) (2024-11-25T23:58:38Z) - AVS-Net: Point Sampling with Adaptive Voxel Size for 3D Scene Understanding [16.03214439663472]
本稿では,精度と効率性を両立する高度サンプリング器を提案する。
本稿では,Voxel Adaptation Module(Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module)を提案する。
既存の最先端手法と比較して,本手法は屋外および屋内の大規模データセットの精度を向上する。
論文 参考訳(メタデータ) (2024-02-27T14:05:05Z) - iPUNet:Iterative Cross Field Guided Point Cloud Upsampling [20.925921503694894]
3Dスキャン装置によって取得される点雲は、しばしば疎く、ノイズが多く、一様ではないため、幾何学的特徴が失われる。
任意の比率で高密度および均一な点を生成する学習ベースポイントアップサンプリング手法iPUNetを提案する。
iPUNetは、ノイズや不均一に分散された入力を処理し、最先端のクラウドサンプリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-10-13T13:24:37Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
本稿では,点雲を効果的かつ包括的に表現する円筒型三重対視図を提案する。
また,LiDAR点雲の距離分布を考慮し,円筒座標系における三点ビューを構築した。
プロジェクション中に構造の詳細を維持するために空間群プーリングを使用し、各TPV平面を効率的に処理するために2次元バックボーンを採用する。
論文 参考訳(メタデータ) (2023-08-31T17:57:17Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
我々は、任意のアップサンプリングレートをサポートする、正確なポイントクラウドアップサンプリングのための新しいフレームワークを提案する。
提案手法は,まず,所定のアップサンプリング率に応じて低解像度の雲を補間する。
論文 参考訳(メタデータ) (2023-04-24T06:36:35Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
我々はBIMS-PUと呼ばれる新しいポイント・クラウド・アップサンプリング・パイプラインを開発した。
対象のサンプリング因子を小さな因子に分解することにより,アップ/ダウンサンプリング手順をいくつかのアップ/ダウンサンプリングサブステップに分解する。
提案手法は最先端手法よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-25T13:13:37Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - Point Cloud Upsampling via Disentangled Refinement [86.3641957163818]
3Dスキャンによって生成された点雲は、しばしばスパース、非均一、ノイズである。
近年のアップサンプリング手法は, 分布均一性と近接場を両立させながら, 密度の高い点集合を生成することを目的としている。
2つのカスケードサブネットワーク、高密度ジェネレータ、空間精錬器を定式化する。
論文 参考訳(メタデータ) (2021-06-09T02:58:42Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。